
SHRIMATI INDIRA GANDHI COLLEGE

 Affiliated to Bharathidasan University| Nationally Accredited at ‘A’ Grade(3rd Cycle) by

NAAC

An ISO 9001:2015 Certified Institution

Thiruchirrappalli

STUDY MATERIAL

Problem Solving using Python and R (P22CSCC12)

DEPARTMENT OF COMPUTER SCIENCE,INFORMATION

TECHNOLOGY AND COMPUTER APPLICATIONS

Prepared by,

MS.S.S.NACHIYA , M.C.A., M.Phil.,UGC-NET

ASST. PROF. IN COMPUTER SCIENCE,

SHRIMATI INDIRA GANDHI COLLEGE,

TIRUCHIRAPPALLI - 2

First Year CORE COURSE II Semester I

PROBLEM SOLVING USING PYTHON

AND R

Code: (Theory) Credit: 5

COURSE OBJECTIVES:

 To understand Computational thinking using Python.

 To develop simple Python programs for solving problems.

 To make students exercise the fundamentals of statistical analysis in R

environment.

UNIT – 1 INTRODUCTION TO PYTHON:

Introduction – Python overview – Getting started – Comments – Python identifiers

– Reserved keywords – Variables – Standard data types – Operators – Statements and

Expressions – String operations – Boolean expressions. Control Statements: The for loop

– while statement – if-elif-else statement – Input from keyboard. Functions: Introduction –

Built-in functions – User defined functions – Function Definition – Function Call - Type

conversion – Type coercion – Python recursive function.

UNIT – II STRINGS:

Strings –Compound data type – len function – String slices – String traversal – Escape

characters – String formatting operator – String formatting functions. Tuples: Tuples –

Creating tuples – Accessing values in tuples – Tuple assignment

– Tuples as return values – Basic tuple operations – Built-in tuple functions. Lists:

Values and accessing elements – Traversing a list – Deleting elements from list – Built-

in list operators & methods. Dictionaries: Creating dictionary – Accessing values in

dictionary – Updating dictionary – Deleting elements from dictionary – Operations in

dictionary - Built-in dictionary methods.

UNIT – III FILES AND EXCEPTIONS:

Introduction to File Input and Output - Writing Structures to a File - Using loops to

process files Processing Records - Exception. Classes and Objects in Python: Overview of

OOP – Data encapsulation – Polymorphism – Class definition – Creating objects –

Inheritance – Multiple inheritances – Method overriding – Data encapsulation – Data hiding.

UNIT – IV DATA MANIPULATION TOOLS & SOFTWARES:

Numpy: Installation - Ndarray - Basic Operations -Indexing, Slicing, and Iterating

- Shape Manipulation - Array Manipulation - Structured Arrays -Reading and Writing

Array Data on Files. Pandas: The pandas Library: An Introduction - Installation -

Introduction to pandas Data Structures - Operations between Data Structures - Function

Application and Mapping - Sorting and Ranking - Correlation and Covariance -

―Not a Number Data - Hierarchical Indexing and Leveling – Reading and Writing

Data: CSV or Text File - HTML Files – Microsoft Excel Files.

UNIT – V PROGRAMMING WITH R:

Variables - Vector, matrix, arrays – List – Data Frames – Functions – Strings –

Factors – Loops – Packages –Date and Time – Files - Making packages

Unit -I

Introduction to Python

Python is a popular programming language. It was created by Guido van Rossum,

 and released in 1991.

It is used for:

 web development (server-side),

 software development,

 mathematics,

 system scripting.

What can Python do?

 Python can be used on a server to create web applications.

 Python can be used alongside software to create workflows.

 Python can connect to database systems. It can also read and modify files.

 Python can be used to handle big data and perform complex mathematics.

 Python can be used for rapid prototyping, or for production-ready software development.

Why Python?

 Python works on different platforms (Windows, Mac, Linux, Raspberry Pi, etc).

 Python has a simple syntax similar to the English language.

 Python has syntax that allows developers to write programs with fewer lines than some other programming

languages.

 Python runs on an interpreter system, meaning that code can be executed as soon as it is written. This

means that prototyping can be very quick.

 Python can be treated in a procedural way, an object-oriented way or a functional way.

Python Basic Syntax

There is no use of curly braces or semicolon in Python programming language. It is English-like language. But

Python uses the indentation to define a block of code. Indentation is nothing but adding whitespace before the

statement when it is needed. For example -

def func():

 statement 1

statement 2

 …………………

 …………………

 statement N

note

Python is a case-sensitive language, which means that uppercase and lowercase letters are treated differently. For

example, 'name' and 'Name' are two different variables in Python.

Advantages of Python

Python provides many useful features to the programmer. These features make it the most popular and widely used

language. We have listed below few-essential features of Python.

o Easy to use and Learn: Python has a simple and easy-to-understand syntax, unlike traditional languages

like C, C++, Java, etc., making it easy for beginners to learn.

o Expressive Language: It allows programmers to express complex concepts in just a few lines of code or

reduces Developer's Time.

o Interpreted Language: Python does not require compilation, allowing rapid development and testing. It

uses Interpreter instead of Compiler.

o Object-Oriented Language: It supports object-oriented programming, making writing reusable and

modular code easy.

o Open Source Language: Python is open source and free to use, distribute and modify.

o Extensible: Python can be extended with modules written in C, C++, or other languages.

o Learn Standard Library: Python's standard library contains many modules and functions that can be used

for various tasks, such as string manipulation, web programming, and more.

o GUI Programming Support: Python provides several GUI frameworks, such as Tkinter and PyQt,

allowing developers to create desktop applications easily.

o Integrated: Python can easily integrate with other languages and technologies, such as C/C++, Java, and .

NET.

o Embeddable: Python code can be embedded into other applications as a scripting language.

o Dynamic Memory Allocation: Python automatically manages memory allocation, making it easier for

developers to write complex programs without worrying about memory management.

o Wide Range of Libraries and Frameworks: Python has a vast collection of libraries and frameworks,

such as NumPy, Pandas, Django, and Flask, that can be used to solve a wide range of problems.

o Versatility: Python is a universal language in various domains such as web development, machine learning,

data analysis, scientific computing, and more.

o Large Community: Python has a vast and active community of developers contributing to its development

and offering support. This makes it easy for beginners to get help and learn from experienced developers.

o Career Opportunities: Python is a highly popular language in the job market. Learning Python can open

up several career opportunities in data science, artificial intelligence, web development, and more.

o High Demand: With the growing demand for automation and digital transformation, the need for Python

developers is rising. Many industries seek skilled Python developers to help build their digital

infrastructure.

o Increased Productivity: Python has a simple syntax and powerful libraries that can help developers write

code faster and more efficiently. This can increase productivity and save time for developers and

organizations.

o Big Data and Machine Learning: Python has become the go-to language for big data and machine

learning. Python has become popular among data scientists and machine learning engineers with libraries

like NumPy, Pandas, Scikit-learn, TensorFlow, and more.

Where is Python used?

Python is a general-purpose, popular programming language, and it is used in almost every technical field. The

various areas of Python use are given below.

o Data Science: Data Science is a vast field, and Python is an important language for this field because of its

simplicity, ease of use, and availability of powerful data analysis and visualization libraries like NumPy,

Pandas, and Matplotlib.

o Desktop Applications: PyQt and Tkinter are useful libraries that can be used in GUI - Graphical User

Interface-based Desktop Applications. There are better languages for this field, but it can be used with other

languages for making Applications.

o Console-based Applications: Python is also commonly used to create command-line or console-based

applications because of its ease of use and support for advanced features such as input/output redirection

and piping.

o Mobile Applications: While Python is not commonly used for creating mobile applications, it can still be

combined with frameworks like Kivy or BeeWare to create cross-platform mobile applications.

o Software Development: Python is considered one of the best software-making languages. Python is easily

compatible with both from Small Scale to Large Scale software.

o Artificial Intelligence: AI is an emerging Technology, and Python is a perfect language for artificial

intelligence and machine learning because of the availability of powerful libraries such as TensorFlow,

Keras, and PyTorch.

o Web Applications: Python is commonly used in web development on the backend with frameworks like

Django and Flask and on the front end with tools like JavaScript and HTML.

o Enterprise Applications: Python can be used to develop large-scale enterprise applications with features

such as distributed computing, networking, and parallel processing.

o 3D CAD Applications: Python can be used for 3D computer-aided design (CAD) applications through

libraries such as Blender.

o Machine Learning: Python is widely used for machine learning due to its simplicity, ease of use, and

availability of powerful machine learning libraries.

o Computer Vision or Image Processing Applications: Python can be used for computer vision and image

processing applications through powerful libraries such as OpenCV and Scikit-image.

o Speech Recognition: Python can be used for speech recognition applications through libraries such as

SpeechRecognition and PyAudio.

o Scientific computing: Libraries like NumPy, SciPy, and Pandas provide advanced numerical computing

capabilities for tasks like data analysis, machine learning, and more.

o Education: Python's easy-to-learn syntax and availability of many resources make it an ideal language for

teaching programming to beginners.

o Testing: Python is used for writing automated tests, providing frameworks like unit tests and pytest that

help write test cases and generate reports.

o Gaming: Python has libraries like Pygame, which provide a platform for developing games using Python.

o IoT: Python is used in IoT for developing scripts and applications for devices like Raspberry Pi, Arduino,

and others.

o Networking: Python is used in networking for developing scripts and applications for network automation,

monitoring, and management.

o DevOps: Python is widely used in DevOps for automation and scripting of infrastructure management,

configuration management, and deployment processes.

o Finance: Python has libraries like Pandas, Scikit-learn, and Statsmodels for financial modeling and

analysis.

o Audio and Music: Python has libraries like Pyaudio, which is used for audio processing, synthesis, and

analysis, and Music21, which is used for music analysis and generation.

o Writing scripts: Python is used for writing utility scripts to automate tasks like file operations, web

scraping, and data processing.

How to Get Started With Python?

Python is a cross-platform programming language, which means that it can run on multiple platforms like

Windows, macOS, Linux, and has even been ported to the Java and .NET virtual machines. It is free and open-

source.

Even though most of today's Linux and Mac have Python pre-installed in it, the version might be out-of-date. So, it

is always a good idea to install the most current version.

1. Run Python in Immediate mode

Once Python is installed, typing python in the command line will invoke the interpreter in immediate mode. We

can directly type in Python code, and press Enter to get the output.

Try typing in 1 + 1 and press enter. We get 2 as the output. This prompt can be used as a calculator. To exit this

mode, type quit() and press enter.

2. Run Python in the Integrated Development Environment (IDE)

We can use any text editing software to write a Python script file.

We just need to save it with the .py extension. But using an IDE can make our life a lot easier. IDE is a piece of

software that provides useful features like code hinting, syntax highlighting and checking, file explorers, etc. to the

programmer for application development.

By the way, when you install Python, an IDE named IDLE is also installed. You can use it to run Python on your

computer. It's a decent IDE for beginners.

When you open IDLE, an interactive Python Shell is opened.

Now you can create a new file and save it with .py extension. For example, hello.py

Write Python code in the file and save it. To run the file, go to Run > Run Module or simply click F5.

Python Comments

Comments in Python are the lines in the code that are ignored by the interpreter during the execution of the

program. Comments enhance the readability of the code and help the programmers to understand the code very

carefully.

There are three types of comments in Python:

 Single line Comments

 Multiline Comments

 Docstring Comments

Single Line Comments

A hash sign (#) that is not inside a string literal begins a comment. All characters after the # and up to the end of

the physical line are part of the comment and the Python interpreter ignores them.

https://www.geeksforgeeks.org/python-programming-language/learn-python-tutorial/

Example

Following is an example of a single line comment in Python:

This is a single line comment in python

print ("Hello, World!")

This produces the following result −

Hello, World!

You can type a comment on the same line after a statement or expression −

name = "Madisetti" # This is again comment

Multi-Line Comments

Python does not provide a direct way to comment multiple line. You can comment multiple lines as follows −

This is a comment.

This is a comment, too.

This is a comment, too.

I said that already.

Following triple-quoted string is also ignored by Python interpreter and can be used as a multiline comments:

'''

This is a multiline

Example

Following is the example to show the usage of multi-line comments:

'''

This is a multiline

comment.

'''

print ("Hello, World!")

This produces the following result −

Hello, World!

Docstring Comments

The strings enclosed in triple quotes that come immediately after the defined function are called Python docstring.

It's designed to link documentation developed for Python modules, methods, classes, and functions together. It's

placed just beneath the function, module, or class to explain what they perform. The docstring is then readily

accessible in Python using the __doc__ attribute.

def add(a, b):

 """Function to add the value of a and b"""

 return a+b

print(add.__doc__)

This produces the following result −

Function to add the value of a and b

Identifiers in Python

Identifier is a user-defined name given to a variable, function, class, module, etc. The identifier is a combination of

character digits and an underscore. They are case-sensitive i.e., 'num' and 'Num' and 'NUM' are three different

identifiers in python.

Rules for Naming Python Identifiers

 It cannot be a reserved python keyword.

 It should not contain white space.

 It can be a combination of A-Z, a-z, 0-9, or underscore.

 It should start with an alphabet character or an underscore (_).

 It should not contain any special character other than an underscore (_).

Some Valid and Invalid Identifiers in Python

Valid Identifiers

Invalid Identifiers

score @core

return_value return

highest_score highest score

name1 1name

convert_to_string convert to_string

Python Keywords and Identifiers Examples

Example 1: Example of and, or, not, True, False keywords.

Python

print("example of True, False, and, or, not keywords")

 # compare two operands using and operator

print(True and True)

 # compare two operands using or operator

print(True or False)

 # use of not operator

print(not False)

Output:

example of True, False, and, or, not keywords

True

True

True

Other examples

Language=’Python’

Continue=’Python’

Reserved words

Python Keywords are some predefined and reserved words in python that have special meanings. Keywords are

used to define the syntax of the coding. The keyword cannot be used as an identifier, function, or variable name.

All the keywords in python are written in lowercase except True and False. There are 35 keywords in Python

3.11.

In python, there is an inbuilt keyword module that provides an iskeyword() function that can be used to check

whether a given string is a valid keyword or not. Furthermore we can check the name of the keywords in Python

by using the kwlist attribute of the keyword module.

Rules for Keywords in Python

 Python keywords cannot be used as identifiers.

 All the keywords in python should be in lowercase except True and False.

List of Python Keywords

Keywords Description

and
This is a logical operator which returns true if both the operands are true

else returns false.

or
This is also a logical operator which returns true if anyone operand is

true else returns false.

not
This is again a logical operator it returns True if the operand is false else

returns false.

if This is used to make a conditional statement.

elif
Elif is a condition statement used with an if statement. The elif

statement is executed if the previous conditions were not true.

else
Else is used with if and elif conditional statements. The else block is

executed if the given condition is not true.

for This is used to create a loop.

while This keyword is used to create a while loop.

https://www.geeksforgeeks.org/keyword-module-in-python/
https://www.geeksforgeeks.org/check-string-valid-keyword-python/

Keywords Description

break This is used to terminate the loop.

as This is used to create an alternative.

def It helps us to define functions.

lambda It is used to define the anonymous function.

pass This is a null statement which means it will do nothing.

return It will return a value and exit the function.

True This is a boolean value.

False This is also a boolean value.

try It makes a try-except statement.

with The with keyword is used to simplify exception handling.

assert
 This function is used for debugging purposes. Usually used to check

the correctness of code

class It helps us to define a class.

continue It continues to the next iteration of a loop

del It deletes a reference to an object.

except Used with exceptions, what to do when an exception occurs

finally
 Finally is used with exceptions, a block of code that will be executed

no matter if there is an exception or not.

from It is used to import specific parts of any module.

Keywords Description

global This declares a global variable.

import This is used to import a module.

in It’s used to check whether a value is present in a list, range, tuple, etc.

is This is used to check if the two variables are equal or not.

nonlocal It’s declared a non-local variable.

raise This raises an exception.

yield It ends a function and returns a generator.

async It is used to create asynchronous coroutine.

await It releases the flow of control back to the event loop.

none

This is a special constant used to denote a null value or avoid. It’s

important to

remember, 0, any empty container(e.g empty list) do not compute to

None.

Variables in Python

Python Variable is containers that store values. Python is not “statically typed”. We do not need to declare

variables before using them or declare their type. A variable is created the moment we first assign a value to it. A

Python variable is a name given to a memory location. It is the basic unit of storage in a program.

Creating Variables

Python has no command for declaring a variable.

A variable is created the moment you first assign a value to it.

https://www.geeksforgeeks.org/python-programming-language/

Example

x = 5

y = "John"

print(x)

print(y)

Output:

>3

>Jhon

Note:

 The value stored in a variable can be changed during program execution.

 A Variables in Python is only a name given to a memory location, all the operations done on the

variable effects that memory location.

Rules for Python variables

 A Python variable name must start with a letter or the underscore character.

 A Python variable name cannot start with a number.

 A Python variable name can only contain alpha-numeric characters and underscores (A-z, 0-9, and _

).

 Variable in Python names are case-sensitive (name, Name, and NAME are three different variables).

 The reserved words(keywords) in Python cannot be used to name the variable in Python.

Example

valid variable name

geeks =1

Geeks =2

Ge_e_ks=5

_geeks =6

geeks_ =7

GEEKS =8

 print(geeks, Geeks, Ge_e_ks)

print(_geeks, geeks_, _GEEKS_)

Output:

1 2 5

https://www.geeksforgeeks.org/python-keywords-and-identifiers/

6 7 8

Variables Assignment in Python

Here, we have assigned a number, a floating point number, and a string to a variable such as age, salary, and

name.

Example

An integer assignment

age =45

A floating point

salary =1456.8

A string

name ="John"

 print(age)

print(salary)

print(name)

Output:

45

1456.8

John

Redeclaring variables in Python

It can re-declare the Python variable once we have declared the variable already.

Example

declaring the var

Number =100

display

print("Before declare: ", Number)

re-declare the var

Number =120.3

print("After re-declare:", Number)

Output:

Before declare: 100

After re-declare: 120.3

Python Assign Values to Multiple Variables

Python allows assigning a single value to several variables simultaneously with “=” operators.

For example:

a =b =c =10

print(a)

print(b)

print(c)

Output:

10

10

10

Assigning different values to multiple variables

Python allows adding different values in a single line with “,” operators.

a, b, c =1, 20.2, "GeeksforGeeks"

print(a)

print(b)

print(c)

Output:

1

20.2

GeeksforGeeks

Python Data Types

The data stored in memory can be of many types. For example, a person's age is stored as a numeric value and his

or her address is stored as alphanumeric characters. Python has various standard data types that are used to define

the operations possible on them and the storage method for each of them.

Python has five standard data types −

 Numbers

 String

 List

 Tuple

 Dictionary

Python Numbers

Number data types store numeric values. Number objects are created when you assign a value to them. For

example −

var1 = 1

var2 = 10

Python Strings

Strings in Python are identified as a contiguous set of characters represented in the quotation marks. Python allows

for either pairs of single or double quotes. Subsets of strings can be taken using the slice operator ([] and [:]) with

indexes starting at 0 in the beginning of the string and working their way from -1 at the end.

Python Lists

Lists are the most versatile of Python's compound data types. A list contains items separated by commas and

enclosed within square brackets ([]). To some extent, lists are similar to arrays in C. One difference between them

is that all the items belonging to a list can be of different data type.

Python Tuples

A tuple is another sequence data type that is similar to the list. A tuple consists of a number of values separated by

commas. Unlike lists, however, tuples are enclosed within parentheses.

Python Dictionary

Python's dictionaries are kind of hash table type. They work like associative arrays or hashes found in Perl and

consist of key-value pairs. A dictionary key can be almost any Python type, but are usually numbers or strings.

Values, on the other hand, can be any arbitrary Python object.

Numbers

Numeric values are stored in numbers. The whole number, float, and complex qualities have a place with a Python

Numbers datatype. Python offers the type() function to determine a variable's data type. The instance () capability

is utilized to check whether an item has a place with a specific class.

o Int: Whole number worth can be any length, like numbers 10, 2, 29, - 20, - 150, and so on. An integer can

be any length you want in Python. Its worth has a place with int.

o Float: Float stores drifting point numbers like 1.9, 9.902, 15.2, etc. It can be accurate to within 15 decimal

places.

o Complex: An intricate number contains an arranged pair, i.e., x + iy, where x and y signify the genuine and

non-existent parts separately. The complex numbers like 2.14j, 2.0 + 2.3j, etc.

Example

1. a = 5

2. print("The type of a", type(a))

3. b = 40.5

4. print("The type of b", type(b))

5. c = 1+3j

6. print("The type of c", type(c))

7. print(" c is a complex number", isinstance(1+3j,complex))

Output

The type of a <class 'int'>

The type of b <class 'float'>

The type of c <class 'complex'>

c is complex number: True

Set

Unordered objects are grouped together as a set. There cannot be any duplicates of any set element, and it must be

immutable (cannot be changed).

Creation of set

The built-in set() method can be used to build sets with an iterable object or a series by wrapping the sequence

behind curly brackets and separating them with a comma,. The elements in a set don't have to be of the same type;

they might contain a variety of mixed data type values

Example

Create a set from a list using the set() function

s =set([1,2,3,4,5])

print(s)# Output: {1, 2, 3, 4, 5}

Create a set using curly braces

s ={1,2,3,4,5}

print(s)# Output: {1, 2, 3, 4, 5}

Output

set([1, 2, 3, 4, 5])

set([1, 2, 3, 4, 5])

Boolean

True and False are the two default values for the Boolean type. These qualities are utilized to decide the given

assertion valid or misleading. The class book indicates this. False can be represented by the 0 or the letter "F,"

while true can be represented by any value that is not zero.

Example

1. # Python program to check the boolean type

2. print(type(True))

3. print(type(False))

4. print(false)

Output:

<class 'bool'>

<class 'bool'>

NameError: name 'false' is not defined

Sequence

The sequence in Python is an ordered grouping of related or dissimilar data types. Sequences enable the ordered

and effective storage of several values. In Python, there are various sequence types. They are given below −

 List

 Tuple

 Range

List

Lists are just like arrays, declared in other languages which is an ordered collection of data. It is very flexible as

the items in a list do not need to be of the same type.

Creating List

Lists in Python can be created by just placing the sequence inside the square brackets[].

Example

Creating a List

https://www.geeksforgeeks.org/python-list/

List=[]

print("Initial blank List: ")

print(List)

Creating a List with

the use of a String

List=['GeeksForGeeks']

print("\nList with the use of String: ")

print(List)

Creating a List with

the use of multiple values

List=["Geeks", "For", "Geeks"]

print("\nList containing multiple values: ")

print(List[0])

print(List[2])

Creating a Multi-Dimensional List

(By Nesting a list inside a List)

List=[['Geeks', 'For'], ['Geeks']]

print("\nMulti-Dimensional List: ")

print(List)

Output

Initial blank List:

[]

List with the use of String:

['GeeksForGeeks']

List containing multiple values:

Geeks

Geeks

Multi-Dimensional List:

[['Geeks', 'For'], ['Geeks']]

Tuple

Tuples are similar to lists, but they can’t be modified once they are created. Tuples are commonly used to store

data that should not be modified, such as configuration settings or data that is read from a database.

Example

Create a tuple using parentheses

t =(1,2,3,4)

print(t)# Output: (1, 2, 3, 4)

Access an item in the tuple using its index

print(t[1])# Output: 2

Output

(1, 2, 3, 4)

2

String Data Type

Strings in Python are arrays of bytes representing Unicode characters. A string is a collection of one or more

characters put in a single quote, double-quote, or triple-quote. In python there is no character data type, a

character is a string of length one. It is represented by str class.

Strings can be used for a variety of actions, including concatenation, slicing, and repetition.

 Concatenation − This process involves connecting two or more threads together.

 Slicing is a method for taking different pieces of string out.

 Repeating a set of instructions, a certain number of times is referred to as repetition.

Creating String

Strings in Python can be created using single quotes or double quotes or even triple quotes.

Example

Python Program for

Creation of String

https://www.geeksforgeeks.org/python-strings/

Creating a String

with single Quotes

String1 ='Welcome to the Geeks World'

print("String with the use of Single Quotes: ")

print(String1)

Creating a String

with double Quotes

String1 ="I'm a Geek"

print("\nString with the use of Double Quotes: ")

print(String1)

print(type(String1))

Creating a String

with triple Quotes

String1 ='''I'm a Geek and I live in a world of "Geeks"'''

print("\nString with the use of Triple Quotes: ")

print(String1)

print(type(String1))

Creating String with triple

Quotes allows multiple lines

String1 ='''Geeks

 For

 Life'''

print("\nCreating a multiline String: ")

print(String1)

Output

String with the use of Single Quotes:

Welcome to the Geeks World

String with the use of Double Quotes:

I'm a Geek

<class 'str'>

String with the use of Triple Quotes:

I'm a Geek and I live in a world of "Geeks"

<class 'str'>

Creating a multiline String:

Geeks

 For

 Life

Python Operators

The operator is a symbol that performs a specific operation between two operands, according to one definition.

Operators serve as the foundation upon which logic is constructed in a program in a particular programming

language. In every programming language, some operators perform several tasks. Same as other languages, Python

also has some operators, and these are given below -

o Arithmetic operators

o Comparison operators

o Assignment Operators

o Logical Operators

o Bitwise Operators

o Membership Operators

o Identity Operators

o Arithmetic Operators

Arithmetic Operators

Arithmetic operators used between two operands for a particular operation. There are many arithmetic operators. It

includes the exponent (**) operator as well as the + (addition), - (subtraction), * (multiplication), / (divide), %

(reminder), and // (floor division) operators.

Operator Description

+ (Addition) It is used to add two operands. For example, if a = 10, b = 10 =>a+b = 20

- (Subtraction) It is used to subtract the second operand from the first operand. If the first

operand is less than the second operand, the value results negative. For example,

if a = 20, b = 5 => a - b = 15

/ (divide) It returns the quotient after dividing the first operand by the second operand. For

example, if a = 20, b = 10 => a/b = 2.0

*

(Multiplication)

It is used to multiply one operand with the other. For example, if a = 20, b = 4

=> a * b = 80

% (reminder) It returns the reminder after dividing the first operand by the second operand.

For example, if a = 20, b = 10 =>a%b = 0

** (Exponent) As it calculates the first operand's power to the second operand, it is an

exponent operator.

// (Floor

division)

It provides the quotient's floor value, which is obtained by dividing the two

operands.

Example

1. a = 32 # Initialize the value of a

2. b = 6 # Initialize the value of b

3. print('Addition of two numbers:',a+b)

4. print('Subtraction of two numbers:',a-b)

5. print('Multiplication of two numbers:',a*b)

6. print('Division of two numbers:',a/b)

7. print('Reminder of two numbers:',a%b)

8. print('Exponent of two numbers:',a**b)

9. print('Floor division of two numbers:',a//b)

Output

Addition of two numbers: 38

Subtraction of two numbers: 26

Multiplication of two numbers: 192

Division of two numbers: 5.333333333333333

Reminder of two numbers: 2

Exponent of two numbers: 1073741824

Floor division of two numbers: 5

Comparison operator

Comparison operators mainly use for comparison purposes. Comparison operators compare the values of the two

operands and return a true or false Boolean value in accordance. The example of comparison operators are ==, !=,

<=, >=, >, <. In the below table, we explain the works of the operators.

Operator Description

== If the value of two operands is equal, then the condition becomes true.

!= If the value of two operands is not equal, then the condition becomes true.

<= The condition is met if the first operand is smaller than or equal to the second

operand.

>= The condition is met if the first operand is greater than or equal to the second

operand.

> If the first operand is greater than the second operand, then the condition becomes

true.

< If the first operand is less than the second operand, then the condition becomes

Example

1. a = 32 # Initialize the value of a

2. b = 6 # Initialize the value of b

3. print('Two numbers are equal or not:',a==b)

4. print('Two numbers are not equal or not:',a!=b)

5. print('a is less than or equal to b:',a<=b)

6. print('a is greater than or equal to b:',a>=b)

7. print('a is greater b:',a>b)

8. print('a is less than b:',a<b)

Output

Two numbers are equal or not: False

Two numbers are not equal or not: True

a is less than or equal to b: False

a is greater than or equal to b: True

a is greater b: True

a is less than b: False

Assignment Operators

Using the assignment operators, the right expression's value is assigned to the left operand. There are some

examples of assignment operators like =, +=, -=, *=, %=, **=, //=. In the below table, we explain the works of the

operators.

Operator Description

= It assigns the value of the right expression to the left operand.

+= By multiplying the value of the right operand by the value of the left operand,

the left operand receives a changed value. For example, if a = 10, b = 20 => a+

= b will be equal to a = a+ b and therefore, a = 30.

true.

-= It decreases the value of the left operand by the value of the right operand and

assigns the modified value back to left operand. For example, if a = 20, b = 10

=> a- = b will be equal to a = a- b and therefore, a = 10.

*= It multiplies the value of the left operand by the value of the right operand and

assigns the modified value back to then the left operand. For example, if a = 10,

b = 20 => a* = b will be equal to a = a* b and therefore, a = 200.

%= It divides the value of the left operand by the value of the right operand and

assigns the reminder back to the left operand. For example, if a = 20, b = 10 =>

a % = b will be equal to a = a % b and therefore, a = 0.

= a=b will be equal to a=a**b, for example, if a = 4, b =2, a**=b will assign

4**2 = 16 to a.

//= A//=b will be equal to a = a// b, for example, if a = 4, b = 3, a//=b will assign

4//3 = 1 to a.

Bitwise Operators

The two operands' values are processed bit by bit by the bitwise operators. The examples of Bitwise operators are

bitwise OR (|), bitwise AND (&), bitwise XOR (^), negation (~), Left shift (<<), and Right shift (>>). Consider the

case below.

Rules

1. if a = 7

2. b = 6

3. then, binary (a) = 0111

4. binary (b) = 0110

5. hence, a & b = 0011

6. a | b = 0111

7. a ^ b = 0100

8. ~ a = 1000

9. Let, Binary of x = 0101

10. Binary of y = 1000

11. Bitwise OR = 1101

12. 8 4 2 1

13. 1 1 0 1 = 8 + 4 + 1 = 13

14. Bitwise AND = 0000

15. 0000 = 0

16. Bitwise XOR = 1101

17. 8 4 2 1

18. 1 1 0 1 = 8 + 4 + 1 = 13

19. Negation of x = ~x = (-x) - 1 = (-5) - 1 = -6

20. ~x = -6

Operator Description

& (binary

and)

A 1 is copied to the result if both bits in two operands at the same location are 1. If

not, 0 is copied.

| (binary or) The resulting bit will be 0 if both the bits are zero; otherwise, the resulting bit will

be 1.

^ (binary xor) If the two bits are different, the outcome bit will be 1, else it will be 0.

~ (negation) The operand's bits are calculated as their negations, so if one bit is 0, the next bit

will be 1, and vice versa.

<< (left shift) The number of bits in the right operand is multiplied by the leftward shift of the

value of the left operand.

>> (right

shift)

The left operand is moved right by the number of bits present in the right operand.

Example

1. a = 5 # initialize the value of a

2. b = 6 # initialize the value of b

3. print('a&b:', a&b)

4. print('a|b:', a|b)

5. print('a^b:', a^b)

6. print('~a:', ~a)

7. print('a<<b:', a<<b)

8. print('a>>b:', a>>b)

Output

a&b: 4

a|b: 7

a^b: 3

~a: -6

a<>b: 0

Logical Operators

The assessment of expressions to make decisions typically uses logical operators. The examples of logical

operators are and, or, and not. In the case of logical AND, if the first one is 0, it does not depend upon the second

one. In the case of logical OR, if the first one is 1, it does not depend on the second one. Python supports the

following logical operators.

Operator Description

and The condition will also be true if the expression is true. If the two expressions a

and b are the same, then a and b must both be true.

or The condition will be true if one of the phrases is true. If a and b are the two

expressions, then an or b must be true if and is true and b is false.

not If an expression a is true, then not (a) will be false and vice versa.

Example

1. a = 5 # initialize the value of a

2. print(Is this statement true?:',a > 3 and a < 5)

3. print('Any one statement is true?:',a > 3 or a < 5)

4. print('Each statement is true then return False and vice-versa:',(not(a > 3 and a < 5)))

Output

Is this statement true?: False

Any one statement is true?: True

Each statement is true then return False and vice-versa: True

Membership Operators

The membership of a value inside a Python data structure can be verified using Python membership operators. The

result is true if the value is in the data structure; otherwise, it returns false.

Operator Description

in If the first operand cannot be found in the second operand, it is evaluated to be

true (list, tuple, or dictionary).

not in If the first operand is not present in the second operand, the evaluation is true (list,

tuple, or dictionary).

Example

1. x = ["Rose", "Lotus"]

2. print(' Is value Present?', "Rose" in x)

3. print(' Is value not Present?', "Riya" not in x)

Output

Is value Present? True

Is value not Present? True

Identity Operators

Operator Description

is If the references on both sides point to the same object, it is determined to be true.

is not If the references on both sides do not point at the same object, it is determined to be

true.

Example

1. a = ["Rose", "Lotus"]

2. b = ["Rose", "Lotus"]

3. c = a

4. print(a is c)

5. print(a is not c)

6. print(a is b)

7. print(a is not b)

8. print(a == b)

9. print(a != b)

output

True

False

False

True

True

False

Expression

An expression is a combination of operators and operands that is interpreted to produce some other value. In any

programming language, an expression is evaluated as per the precedence of its operators. So that if there is more

than one operator in an expression, their precedence decides which operation will be performed first.

Example

Arithmetic Expression

1+2

Comparison Expression

1<2

String Concatenation Expression

"Hello"+" "+"World"

Function Call Expression

len("Hello")

List Indexing Expression

[1,2,3][1]

Tuple Packing Expression

1,2,3

Dictionary Lookup Expression

{"key":"value"}["key"]

Statements

In Python, statements are instructions that perform some sort of action, but do not produce any value. Statements

are used to control the flow of the program and carry out various tasks, such as defining variables, making

decisions, and looping through data. Some common examples of Python statements include assignment statements,

control flow statements (such as if/else, for, and while loops), and import statements.

1. Assignment Statement: x = 1 assigns the value of 1 to the variable x.

2. Control Flow Statement: if x > 0: print("x is positive") checks if the value of x is positive and prints a

message if it is.

3. Import Statement: import math imports the math module and makes its functions and constants available

for use in the program.

4. For Loop Statement: for i in range(5): print(i) iterates over the range 0 to 4 and prints each number.

5. While Loop Statement: while x < 5: x += 1 repeatedly increments the value of x until it is no longer less

than 5.

6. Function Definition Statement: def add(a, b): return a + b defines a function that takes two arguments and

returns their sum

Example

Assignment Statement

x =1

Control Flow Statement

if x >0:

print("x is positive")

Import Statement

import math

For Loop Statement

foriinrange(5):

print(i)

While Loop Statement

while x <5:

 x +=1

Function Definition Statement

defadd(a, b):

return a + b

String operations in Python

Strings are fundamental and essential data structures that every Python programmer works with. In Python, a string

is a sequence of characters enclosed within either single quotes ('...') or doubles quotes ("..."). It is an immutable

built-in data structure, meaning once a string is created, it cannot be modified.

1. String Padding: Add Extra Character Elegantly

String padding is a term to adding characters to the beginning or end of a string until it reaches a certain length. It

can be useful in formatting text to align with other data or to make it easier to read.

In Python, you can pad a string using the str.ljust(), str.rjust(), and str.center() methods.

Example

1. text = "Python"

2. padded_text = text.rjust(10, '-')

3. print(padded_text)

Output

----Python

In this example, the rjust() method adds dashes to the beginning of the string until it is ten characters long.

2. String Splitting

String splitting refers to dividing a string into multiple substrings based on a specified delimiter or separator. In

Python, you can split a string using the str.split() method.

Example

1. text = "Hello world, how are you today?"

2. words = text.split()

3. print(words)

Output

['Hello', 'world,', 'how', 'are', 'you', 'today?']

In this example, the split () method returns a list of substrings, where each substring corresponds to a word in the

original string.

3. Concatenate Strings

In Python, we can concatenate strings using the + operator.

Example

1. string1 = "Hello"

2. string2 = "world"

3. result = string1 + " " + string2

4. print(result)

Output

Hello world

4. Search for Substring Effective

Finding search string is a common requirement in daily programming. Python comes with the two methods. One is

find() method ,

Example

1. title = 'How to search substrings of Python strings'

2. print(title.find('string'))

3. print(title.find('string'))

4. print(title.find('Yang'))

Output

17

35

5. Reverse the String

Generally, we use the loop to reverse the given string; it can be also reversed using the slicing.

Example

1. name = "Peter"

2. print(name[::-1])

Output

reteP

6.Deleting the String

As we know that strings are immutable. We cannot delete or remove the characters from the string. But we can

delete the entire string using the del keyword.

Example

1. str1 = "JAVATPOINT"

2. del str1

3. print(str1)

Output

NameError: name 'str1' is not defined

Boolean expressions

Booleans represent one of two values: True or False.

Example

print(10 > 9)

print(10 == 9)

print(10 < 9)

Output

True

False

False

a= 200

b= 33

Example

if b > a:

 print("b is greater than a")

else:

 print("b is not greater than a")

Output

a is not greater than a

Control Statements in Python

Control statements in Python are a powerful tool for managing the flow of execution. Control statements are

designed to serve the purpose of modifying a loop's execution from its default behaviour. Based on a condition,

control statements are applied to alter how the loop executes.

By using control statements effectively, developers can write more efficient and effective code.

A. Conditional Control Construct (Selection,

Iteration)

B. Un- Conditional Control Construct (pass, break,

continue, exit(), quit())

Python have following types of control statements

1. Selection (branching) Statement

2. Iteration (looping) Statement

3. Jumping (break / continue)Statement

Conditional Control

Statements

Un Conditional Control

Statements

if Statements

The if statement is arguably the most used statement to control loops. For instance:

Code

Python program to show how if statements control loops

n = 5

for i in range(n):

 if i < 2:

 i += 1

 if i > 2:

 i -= 2

 print(i)

Output:

1

2

2

1

2

Python if - else statements

This construct of python program consist of one if condition with two blocks. When

condition becomes true then executes the block given below it. If condition evaluates result

as false, it will executes the block given below else.

Syntax:

if (condition):

…………………..

else:

…………………..

Flowchart

Example-2:

N=int(input(“Enter Number: “))

if(n%2==0):

print(N,“ is Even Number”)

Else:

print(N,“ is Odd Number”)

Python Ladder if else statements (if-elif-else)

This construct of python program consist of more than one if condition. When first condition

evaluates result as true then executes the block given below it. If condition evaluates result as

false, it transfer the control at else part to test another condition. So, it is multi-decision making

construct.

 Flowchart

Syntax:

if (condition-1):

…………………..

………………….

. elif (condition-2):

…………………..

………………….

. elif (condition-3):

…………………..

…………………..

else:

…………………..

…………………..

Example

var = 100

if var == 200:

 print "1 - Got a true expression value"

 print var

elif var == 150:

 print "2 - Got a true expression value"

 print var

elif var == 100:

 print "3 - Got a true expression value"

 print var

else:

 print "4 - Got a false expression value"

 print var

print "Good bye!"

Output

3 - Got a true expression value

100

Good bye!

Break Statements

In Python, the break statement is employed to end or remove the control from the loop that contains the statement.

It is used to end nested loops (a loop inside another loop), which are shared with both types of Python loops. The

inner loop is completed, and control is transferred to the following statement of the outside loop.

Code

Python program to show how to control the flow of loops with the break statement

Details = [[19, 'Itika', 'Jaipur'], [16, 'Aman', 'Bihar']]

for candidate in Details:

 age = candidate[0]

 if age <= 18:

 break

 print (f"{candidate[1]} of state {candidate[2]} is eligible to vote")

Output:

Itika of state Jaipur is eligible to vote

In the above code, if a candidate's age is less than or equal to 18, the interpreter won't generate the statement of

eligibility. Otherwise, the interpreter will print a message mentioning that the candidate is eligible to vote in the

console.

Continue Statements

Code

1. # Python program to show how to control the flow of a loop using a continue statement

2. # Printing only the letters of the string

3. for l in 'I am a coder':

4. if l == ' ':

5. continue

6. print ('Letter: ', l)

Output:

Letter: I

Letter: a

Letter: m

Letter: a

Letter: c

Letter: o

Letter: d

Letter: e

Letter: r

In this code, when the if-statement encounters a space, the loop will continue to the following letter without

printing the space.

Python While Loop

Until a specified criterion is true, a block of statements will be continuously executed in a Python while loop.

And the line in the program that follows the loop is run when the condition changes to false.

Syntax of Python While

while expression:

 statement(s)

Flowchart

Example

prints Hello Geek 3 Times

count = 0

while (count < 3):

 count = count+1

 print("Hello Geek")

Output:

Hello Geek

Hello Geek

Hello Geek

 Python for loop

A for loop is used for iterating over a sequence (that is either a list, a tuple, a string etc.) With for

loop we can execute a set of statements, and for loop can also execute once for each element in a

list, tuple, set etc.

 Syntax

 for iterator_var in sequence:

 statements(s)

 # Iterating over a list

print("List Iteration")

l = ["geeks", "for", "geeks"]

for i in l:

 print(i)

Iterating over a tuple (immutable)

print("\nTuple Iteration")

t = ("geeks", "for", "geeks")

for i in t:

 print(i)

Iterating over a String

print("\nString Iteration")

s = "Geeks"

for i in s :

 print(i)

Iterating over dictionary

print("\nDictionary Iteration")

d = dict()

d['xyz'] = 123

d['abc'] = 345

for i in d :

 print("%s %d" %(i, d[i]))

Output

List Iteration

geeks

for

geeks

Tuple Iteration

geeks

for

geeks

String Iteration

G

e

e

k

s

Dictionary Iteration

xyz 123

abc 345

 Input from keyboard

Taking input is a way of interact with users, or get data to provide some result. Python provides two built-

in methods to read the data from the keyboard. These methods are given below.

o input(prompt)

o raw_input(prompt)

input()

The input function is used in all latest version of the Python. It takes the input from the user and then evaluates the

expression. The Python interpreter automatically identifies the whether a user input a string, a number, or a list.

Let's understand the following example.

Example -

1. # Python program showing

2. # a use of input()

3.

4. name = input("Enter your name: ")

5. print(name)

Output:

Enter your name: Devansh

Devansh

Example - 2

1. # Python program showing

https://www.javatpoint.com/python-built-in-functions
https://www.javatpoint.com/python-built-in-functions
https://www.javatpoint.com/python-tutorial

2. # a use of input()

3. name = input("Enter your name: ") # String Input

4. age = int(input("Enter your age: ")) # Integer Input

5. marks = float(input("Enter your marks: ")) # Float Input

6. print("The name is:", name)

7. print("The age is:", age)

8. print("The marks is:", marks)

Output:

Enter your name: Johnson

Enter your age: 21

Enter your marks: 89

The name is: Johnson

The age is 21

The marks is: 89.0

raw_input()

The raw_input function is used in Python's older version like Python 2.x. It takes the input from the keyboard and

return as a string. The Python 2.x doesn't use much in the industry. Let's understand the following example.

Example -

Python program showing

a use of raw_input()

name = raw_input("Enter your name : ")

print name

Output:

Enter your name: Peter

Peter

Python Functions

Python Functions is a block of statements that return the specific task. The idea is to put some commonly or

repeatedly done tasks together and make a function so that instead of writing the same code again and again for

different inputs.

Benefits of Using Functions

 Increase Code Readability

 Increase Code Reusability

The syntax to declare a function is:

Creating a Function

In Python a function is defined using the def keyword:

Example

def my_function():

 print("Hello from a function")

Calling a Function

To call a function, use the function name followed by parenthesis:

Example

def my_function():

 print("Hello from a function")

my_function()

Output

Hello from a function

Python Built in Functions

Built-in functions are ones for which the compiler generates inline code at compile time. Every call to a built-in

function eliminates a runtime call to the function having the same name in the dynamic library.

Function Description

abs() Returns the absolute value of a number

all() Returns True if all items in an iterable object are true

any() Returns True if any item in an iterable object is true

ascii() Returns a readable version of an object. Replaces none-ascii characters with

escape character

bin() Returns the binary version of a number

bool() Returns the boolean value of the specified object

bytearray() Returns an array of bytes

bytes() Returns a bytes object

callable() Returns True if the specified object is callable, otherwise False

chr() Returns a character from the specified Unicode code.

classmethod() Converts a method into a class method

https://www.w3schools.com/python/ref_func_abs.asp
https://www.w3schools.com/python/ref_func_all.asp
https://www.w3schools.com/python/ref_func_any.asp
https://www.w3schools.com/python/ref_func_ascii.asp
https://www.w3schools.com/python/ref_func_bin.asp
https://www.w3schools.com/python/ref_func_bool.asp
https://www.w3schools.com/python/ref_func_bytearray.asp
https://www.w3schools.com/python/ref_func_bytes.asp
https://www.w3schools.com/python/ref_func_callable.asp
https://www.w3schools.com/python/ref_func_chr.asp

compile() Returns the specified source as an object, ready to be executed

complex() Returns a complex number

delattr() Deletes the specified attribute (property or method) from the specified object

dict() Returns a dictionary (Array)

dir() Returns a list of the specified object's properties and methods

divmod() Returns the quotient and the remainder when argument1 is divided by

argument2

enumerate() Takes a collection (e.g. a tuple) and returns it as an enumerate object

eval() Evaluates and executes an expression

exec() Executes the specified code (or object)

filter() Use a filter function to exclude items in an iterable object

float() Returns a floating point number

format() Formats a specified value

https://www.w3schools.com/python/ref_func_compile.asp
https://www.w3schools.com/python/ref_func_complex.asp
https://www.w3schools.com/python/ref_func_delattr.asp
https://www.w3schools.com/python/ref_func_dict.asp
https://www.w3schools.com/python/ref_func_dir.asp
https://www.w3schools.com/python/ref_func_divmod.asp
https://www.w3schools.com/python/ref_func_enumerate.asp
https://www.w3schools.com/python/ref_func_eval.asp
https://www.w3schools.com/python/ref_func_exec.asp
https://www.w3schools.com/python/ref_func_filter.asp
https://www.w3schools.com/python/ref_func_float.asp
https://www.w3schools.com/python/ref_func_format.asp

frozenset() Returns a frozenset object

getattr() Returns the value of the specified attribute (property or method)

globals() Returns the current global symbol table as a dictionary

hasattr() Returns True if the specified object has the specified attribute (property/method)

hash() Returns the hash value of a specified object

help() Executes the built-in help system

hex() Converts a number into a hexadecimal value

id() Returns the id of an object

input() Allowing user input

int() Returns an integer number

isinstance() Returns True if a specified object is an instance of a specified object

issubclass() Returns True if a specified class is a subclass of a specified object

https://www.w3schools.com/python/ref_func_frozenset.asp
https://www.w3schools.com/python/ref_func_getattr.asp
https://www.w3schools.com/python/ref_func_globals.asp
https://www.w3schools.com/python/ref_func_hasattr.asp
https://www.w3schools.com/python/ref_func_hex.asp
https://www.w3schools.com/python/ref_func_id.asp
https://www.w3schools.com/python/ref_func_input.asp
https://www.w3schools.com/python/ref_func_int.asp
https://www.w3schools.com/python/ref_func_isinstance.asp
https://www.w3schools.com/python/ref_func_issubclass.asp

iter() Returns an iterator object

len() Returns the length of an object

list() Returns a list

locals() Returns an updated dictionary of the current local symbol table

map() Returns the specified iterator with the specified function applied to each item

max() Returns the largest item in an iterable

memoryview() Returns a memory view object

min() Returns the smallest item in an iterable

next() Returns the next item in an iterable

object() Returns a new object

oct() Converts a number into an octal

open() Opens a file and returns a file object

https://www.w3schools.com/python/ref_func_iter.asp
https://www.w3schools.com/python/ref_func_len.asp
https://www.w3schools.com/python/ref_func_list.asp
https://www.w3schools.com/python/ref_func_locals.asp
https://www.w3schools.com/python/ref_func_map.asp
https://www.w3schools.com/python/ref_func_max.asp
https://www.w3schools.com/python/ref_func_memoryview.asp
https://www.w3schools.com/python/ref_func_min.asp
https://www.w3schools.com/python/ref_func_next.asp
https://www.w3schools.com/python/ref_func_object.asp
https://www.w3schools.com/python/ref_func_oct.asp
https://www.w3schools.com/python/ref_func_open.asp

ord() Convert an integer representing the Unicode of the specified character

pow() Returns the value of x to the power of y

print() Prints to the standard output device

property() Gets, sets, deletes a property

range() Returns a sequence of numbers, starting from 0 and increments by 1 (by default)

repr() Returns a readable version of an object

reversed() Returns a reversed iterator

round() Rounds a numbers

set() Returns a new set object

setattr() Sets an attribute (property/method) of an object

slice() Returns a slice object

sorted() Returns a sorted list

https://www.w3schools.com/python/ref_func_ord.asp
https://www.w3schools.com/python/ref_func_pow.asp
https://www.w3schools.com/python/ref_func_print.asp
https://www.w3schools.com/python/ref_func_range.asp
https://www.w3schools.com/python/ref_func_reversed.asp
https://www.w3schools.com/python/ref_func_round.asp
https://www.w3schools.com/python/ref_func_set.asp
https://www.w3schools.com/python/ref_func_setattr.asp
https://www.w3schools.com/python/ref_func_slice.asp
https://www.w3schools.com/python/ref_func_sorted.asp

staticmethod() Converts a method into a static method

str() Returns a string object

sum() Sums the items of an iterator

super() Returns an object that represents the parent class

tuple() Returns a tuple

type() Returns the type of an object

vars() Returns the __dict__ property of an object

zip() Returns an iterator, from two or more iterators

user-defined functions in Python

Functions that we define ourselves to do certain specific task are referred as user-defined functions.

Advantages

 User-defined functions help to decompose a large program into small segments which makes program easy to

understand, maintain and debug.

 If repeated code occurs in a program. Function can be used to include those codes and execute when needed by

calling that function.

 Programmers working on large project can divide the workload by making different functions.

https://www.w3schools.com/python/ref_func_str.asp
https://www.w3schools.com/python/ref_func_sum.asp
https://www.w3schools.com/python/ref_func_super.asp
https://www.w3schools.com/python/ref_func_tuple.asp
https://www.w3schools.com/python/ref_func_type.asp
https://www.w3schools.com/python/ref_func_vars.asp
https://www.w3schools.com/python/ref_func_zip.asp

Syntax:

def function_name():

 statements

 .

 .

Example

Declaring a function

def fun():

 print("Inside function")

Driver's code

Calling function

fun()

Output:

Inside function

Parameterized Function

The function may take arguments(s) also called parameters as input within the opening and closing parentheses,

just after the function name followed by a colon.

Syntax:

def function_name(argument1, argument2, ...):

 statements

 .

 .

Example:

Python program to

demonstrate functions

A simple Python function to check

whether x is even or odd

def evenOdd(x):

 if (x % 2 == 0):

 print("even")

 else:

 print("odd")

Driver code

evenOdd(2)

evenOdd(3)

Output:

even

odd

type conversion

In programming, type conversion is the process of converting data of one type to another. For example:

converting int data to str.

There are two types of type conversion in Python.

 Implicit Conversion - automatic type conversion

 Explicit Conversion - manual type conversion

Implicit Type Conversion

 In certain situations, Python automatically converts one data type to another. This is known as implicit type

conversion.The Programming language automatically changes one data type to another in implicit shift of

data types.

1. x = 20

2. print("x type:",type(x)

3. y = 0.6

4. print("y type:",type(y))

5. a = x + y

6. print(a)

7. print("z type:",type(z))

Output:

x type: <class 'int'>

y type: <class 'float' >20.6

a type: <class 'float'>

Explicit Type Conversion

In Explicit Type Conversion in Python, the data type is manually changed by the user as per their requirement.

With explicit type conversion, there is a risk of data loss since we are forcing an expression to be changed in

some specific data type. Various forms of explicit type conversion are explained below:

Example

Python code to demonstrate Type conversion

using int(), float()

 # initializing string

s = "10010"

 # printing string converting to int base 2

c = int(s,2)

print ("After converting to integer base 2 : ", end="")

print (c)

 # printing string converting to float

e = float(s)

print ("After converting to float : ", end="")

print (e)

Output:

After converting to integer base 2 : 18

After converting to float : 10010.0

Type Coercion

There are occasions when we would like to convert a variable from one data type to another. This is referred to

as type coercion. We can coerce a variable to another date type by passing it to a function whose name is identical

to the desired data type. For instance, if we want to convert a variable x to an integer, we would use the

command int(x). If we want to convert a variable y to a float, we would wuse float(y).

Example

Coercing an int to a float.

x_int = 19

x_float = float(x_int)

print(x_float)

print(type(x_float))

Output

19.0

<class 'float'>

Coercing a float to an int.

y_float = 6.8

y_int = int(y_float)

print(y_int)

print(type(y_int))

Output

6

<class 'int'>

Python Recursion

Recursion is the process of defining something in terms of itself.

A physical world example would be to place two parallel mirrors facing each other. Any object in between them

would be reflected recursively.

Example

Factorial of a number using recursion

def recur_factorial(n):

 if n == 1:

 return n

 else:

 return n*recur_factorial(n-1)

num = 7

check if the number is negative

if num < 0:

 print("Sorry, factorial does not exist for negative numbers")

elif num == 0:

 print("The factorial of 0 is 1")

else:

 print("The factorial of", num, "is", recur_factorial(num))

Output

The factorial of 7 is 5040

Unit II

Strings

String can be defined as a sequence of characters.

Strings can be considered as a special type of sequence, where all its elements are characters. For example,

string "Hello, World" is basically a sequence ['H', 'e', 'l', 'l', 'o', ',', ' ', 'W', 'o', 'r', 'l', 'd'] and its length can be

calculated by counting number of characters inside the sequence, which is 12.

Declaration of Strings

>>> mystring = "This is not my first String"

>>> print (mystring);

This is not my first String

Example

str = 'Hello World!'

print str # Prints complete string

print str[0] # Prints first character of the string

print str[2:5] # Prints characters starting from 3rd to 5th

print str[2:] # Prints string starting from 3rd character

print str * 2 # Prints string two times

print str + "TEST" # Prints concatenated string

Output

This will produce the following result −

Hello World!

H

llo

llo World!

Hello World!Hello World!

Hello World!TEST

len() function

The function len() is one of Python’s built-in functions. It returns the length of an object. For example, it can return

the number of items in a list.

Syntax: len(object)

Here object- Required. An object. Must be a sequence or a collection

Example

mylist = ["apple", "banana", "cherry"]

x = len(mylist)

Output

3

Example

greeting = "Good Day!"

len(greeting)

Output

9

Example

Python program to demonstrate the use of

len() method

 # with tuple

https://docs.python.org/3.9/library/functions.html?highlight=len#len

tup = (1,2,3)

print(len(tup))

 # with list

l = [1,2,3,4]

print(len(l))

Output:

3

4

Python slice()

can return a range of characters by using the slice syntax.

Specify the start index and the end index, separated by a colon, to return a part of the string.

Example

b = "Hello, World!"

print(b[2:5])

Output

llo

The slice() function returns a slice object that is used to slice any sequence (string, tuple, list, range, or bytes).

Example

text = 'Python Programing'

get slice object to slice Python

sliced_text = slice(6)

print(text[sliced_text])

Output: Python

slice() Syntax

The syntax of slice() is:

slice(start, stop, step)

slice() Parameters

slice() can take three parameters:

 start (optional) - Starting integer where the slicing of the object starts. Default to None if not provided.

 stop - Integer until which the slicing takes place. The slicing stops at index stop -1 (last element).

 step (optional) - Integer value which determines the increment between each index for slicing. Defaults to None if

not provided.

Example 1: Create a slice object for slicing

contains indices (0, 1, 2)

result1 = slice(3)

print(result1)

contains indices (1, 3)

result2 = slice(1, 5, 2)

print(slice(1, 5, 2))

Run Code

Output

slice(None, 3, None)

slice(1, 5, 2)

Example 2: Get substring using slice object

Program to get a substring from the given string

py_string = 'Python'

stop = 3

contains 0, 1 and 2 indices

slice_object = slice(3)

print(py_string[slice_object]) # Pyt

start = 1, stop = 6, step = 2

contains 1, 3 and 5 indices

slice_object = slice(1, 6, 2)

print(py_string[slice_object]) # yhn

Run Code

Output

Pyt

yhn

String Traversal

 Traversing a string. Traversing just means to process every character in a string, usually from left end to right end.

Python allows for 2 ways to do this – both useful but not identical.

https://www.programiz.com/python-programming/online-compiler
https://www.programiz.com/python-programming/online-compiler

Iterate over a list in Python

Method 1: Using For loop.

Method 2: For loop and range()

Method 3: Using a while loop.

Method 4: Using list comprehension.

Method 5: Using enumerate()

Method 6: Using NumPy.

Method 7: Using the iter function and the next function.

Method 8: Using the map() function.

Method 1: Using For loop

We can iterate over a list in Python by using a simple For loop.

Python3 code to iterate over a list

list = [1, 3, 5, 7, 9]

 # Using for loop

for i in list:

 print(i)

Output:

1

3

5

7

9

https://www.geeksforgeeks.org/python-for-loops/

Method 2: For loop and range()

In case we want to use the traditional for loop which iterates from number x to number y.

 Python3

Python3 code to iterate over a list

list = [1, 3, 5, 7, 9]

 # getting length of list

length = len(list)

 # Iterating the index

same as 'for i in range(len(list))'

for i in range(length):

 print(list[i])

Output:

1

3

5

7

9

Method 3: Using a while loop

We can also iterate over a Python list using a while loop.

 Python3

https://www.geeksforgeeks.org/python-while-loop/

Python3 code to iterate over a list

list = [1, 3, 5, 7, 9]

 # Getting length of list

length = len(list)

i = 0

 # Iterating using while loop

while i < length:

 print(list[i])

 i += 1

Output:

1

3

5

7

9

Method 4: Using list comprehension

We can use list comprehension(possibly the most concrete way) to iterate over a list in Python.

 Python3

https://www.geeksforgeeks.org/python-list-comprehension/

Python3 code to iterate over a list

list = [1, 3, 5, 7, 9]

 # Using list comprehension

[print(i) for i in list]

Output:

1

3

5

7

9

Method 5: Using enumerate()

If we want to convert the list into an iterable list of tuples (or get the index based on a condition check, for

example in linear search you might need to save the index of minimum element), you can use the enumerate()

function.

 Python3

Python3 code to iterate over a list

list = [1, 3, 5, 7, 9]

 # Using enumerate()

for i, val in enumerate(list):

https://www.geeksforgeeks.org/enumerate-in-python/
https://www.geeksforgeeks.org/enumerate-in-python/

 print (i, ",",val)

Output:

0 , 1

1 , 3

2 , 5

3 , 7

4 , 9

Method 6: Using NumPy

For very large n-dimensional lists (for example an image array), it is sometimes better to use an external library

such as numpy.

 Python3

Python program for

iterating over array

import numpy as geek

creating an array using

arrange method

a = geek.arange(9)

 # shape array with 3 rows

https://www.geeksforgeeks.org/numpy-in-python-set-1-introduction/

and 4 columns

a = a.reshape(3, 3)

 # iterating an array

for x in geek.nditer(a):

 print(x)

Output:

0

1

2

3

4

5

6

7

8

Method 7: Using the iter function and the next function

Here is an additional approach using the iter function and the next function:

 Python3

Python3 code to iterate over a list

list = [1, 3, 5, 7, 9]

 # Create an iterator object using the iter function

iterator = iter(list)

 # Use the next function to retrieve the elements of the iterator

try:

 while True:

 element = next(iterator)

 print(element)

except StopIteration:

 pass

Output

1

3

5

7

9

Method 8: Using the map() function

Use the map() function to apply a function to each element of a list.

 Python3

Define a function to print each element

https://www.geeksforgeeks.org/python-map-function/

def print_element(element):

 print(element)

Create a list

my_list = [1, 3, 5, 7, 9]

 # Use map() to apply the print_element() function to each element of the list

result = map(print_element, my_list)

 # Since map() returns an iterator, we need to consume

the iterator in order to see the output

for _ in result:

 pass

Output

1

3

5

7

9

Python Escape Characters

 As the name suggests, an escape sequence is a sequence of characters with special meaning when used inside a

string or a character. If an escape sequence is designated to a Non-Printable Character or a Control Code, then the

sequence is called a control character.

Syntax: The characters need to be preceded by a backslash character

Example: \n, \t etc.

If an escape sequence is designated to a Non-Printable Character or a Control Code, then the sequence is called a

control character.

Escape Character Meaning

\’ Single quote

\” Double quote

\\ backslash

\n New line

\r
Carriage

Return

\t Horizontal tab

\b Backspace

\f form feed

\v vertical tab

\0 Null character

\N{name}

Unicode

Character

Database

named

Lookup

\uxxxxxxxx

Unicode

Character

with 16-bit

hex value

XXXX

\Uxxxxxxxx

Unicode

Character

with 32-bit

hex value

XXXXXXXX

\ooo

Character

with octal

value OOO

\xhh

Character

with hex

value HH

Example

A string with a recognized escape sequence

print("I will go\tHome")

A string with a unrecognized escape sequence

print("See you\jtommorow")

Output

I will go Home

See you\jtommorow

Example

sample string

s = "I love to use \t instead of using 4 spaces"

 # normal output

print(s)

 # doubling line backslashes

s = "I love to use \\t instead of using 4 spaces"

 # output after doubling

print(s)

Output:

I love to use instead of using 4 spaces

I love to use \t instead of using 4 spaces

String formatting operator

String formatting in Python allows you to create dynamic strings by combining variables and

values.

Example

#!/usr/bin/python

print "My name is %s and weight is %d kg!" % ('Zara', 21)

output

My name is Zara and weight is 21 kg!

There are five different ways to perform string formatting in Python

 Formatting with % Operator.

 Formatting with format() string method.

 Formatting with string literals, called f-strings.

 Formatting with String Template Class

 Formatting with center() string method.

Formatting string using % Operator

print("The mangy, scrawny stray dog %s gobbled down" %'hurriedly' +

 "the grain-free, organic dog food.")

Output:

The mangy, scrawny stray dog hurriedly gobbled down the grain-free, organic dog food.

Formatting using format() Method

Format() method was introduced with Python3 for handling complex string formatting more

efficiently.

https://www.geeksforgeeks.org/python-string-format-method/

Syntax: ‘String here {} then also {}’.format(‘something1′,’something2’)

Formatting String using format() Method

This code is using {} as a placeholder and then we have called.format() method on the

‘equal’ to the placeholder.

Python3

print('We all are {}.'.format('equal'))

Output:

We all are equal.

Python f-string

To create an f-string in Python, prefix the string with the letter “f”. The string itself can be

formatted in much the same way that you would with str. format(). F-strings provide a

concise and convenient way to embed Python expressions inside string literals for formatting.

String Formatting with F-Strings

In this code, the f-string f”My name is {name}.” is used to interpolate the value of the name

variable into the string.

Example

name = 'Ele'

print(f"My name is {name}.")

Python String Template Class

Template Class allows us to create simplified syntax for output specification. The format uses placeholder names

formed by $ with valid Python identifiers (alphanumeric characters and underscores). Surrounding the

placeholder with braces allows it to be followed by more alphanumeric letters with no intervening spaces.

Writing $$ creates a single escaped $:

Example

Python program to demonstrate

string interpolation

 from string import Template

 n1 = 'Hello'

n2 = 'GeeksforGeeks'

 # made a template which we used to

pass two variable so n3 and n4

formal and n1 and n2 actual

n = Template('$n3 ! This is $n4.')

 # and pass the parameters into the

Output:

My name is Ele.

https://www.geeksforgeeks.org/python-keywords-and-identifiers/

template string.

print(n.substitute(n3=n1, n4=n2))

Output

Hello ! This is GeeksforGeeks.

Python String center() Method

The center() method is a built-in method in Python‘s str class that returns a new string that is centered within a

string of a specified width.

Example

string = "GeeksForGeeks!"

width = 30

 centered_string = string.center(width)

 print(centered_string)

Output :

 GeeksForGeeks!

Tuples

Tuple is a collection of Python objects much like a list. The sequence of values stored in a tuple can be of any

type, and they are indexed by integers.

Values of a tuple are syntactically separated by ‘commas’. Although it is not necessary, it is more common to

define a tuple by closing the sequence of values in parentheses.

https://www.geeksforgeeks.org/python-programming-language/

Creating a Tuple

In Python, tuples are created by placing a sequence of values separated by ‘comma’ with or without the use of

parentheses for grouping the data sequence.

Note: Creation of Python tuple without the use of parentheses is known as Tuple Packing.

Creating an empty Tuple

Tuple1 = ()

print("Initial empty Tuple: ")

print(Tuple1)

Creating a Tuple

with the use of string

Tuple1 = ('Geeks', 'For')

print("\nTuple with the use of String: ")

print(Tuple1)

Creating a Tuple with

the use of list

list1 = [1, 2, 4, 5, 6]

print("\nTuple using List: ")

print(tuple(list1))

Creating a Tuple

with the use of built-in function

Tuple1 = tuple('Geeks')

print("\nTuple with the use of function: ")

print(Tuple1)

Output:

Initial empty Tuple:

()

Tuple with the use of String:

('Geeks', 'For')

Tuple using List:

(1, 2, 4, 5, 6)

Tuple with the use of function:

('G', 'e', 'e', 'k', 's')

Tuples

Tuple is a collection of Python objects much like a list. The sequence of values stored in a tuple can be of any

type, and they are indexed by integers.

Values of a tuple are syntactically separated by ‘commas’. Although it is not necessary, it is more common to

define a tuple by closing the sequence of values in parentheses.

Creating a Tuple

In Python, tuples are created by placing a sequence of values separated by ‘comma’ with or without the use of

parentheses for grouping the data sequence.

Note: Creation of Python tuple without the use of parentheses is known as Tuple Packing.

Creating an empty Tuple

Tuple1 = ()

print("Initial empty Tuple: ")

print(Tuple1)

 # Creating a Tuple

with the use of string

Tuple1 = ('Geeks', 'For')

print("\nTuple with the use of String: ")

print(Tuple1)

 # Creating a Tuple with

the use of list

list1 = [1, 2, 4, 5, 6]

print("\nTuple using List: ")

print(tuple(list1))

 # Creating a Tuple

with the use of built-in function

Tuple1 = tuple('Geeks')

print("\nTuple with the use of function: ")

print(Tuple1)

Output:

Initial empty Tuple:

()

Tuple with the use of String:

('Geeks', 'For')

Tuple using List:

(1, 2, 4, 5, 6)

Tuple with the use of function:

('G', 'e', 'e', 'k', 's')

Accessing values in tuples

Tuples are immutable, and usually, they contain a sequence of heterogeneous elements that are accessed

via unpacking or indexing (or even by attribute in the case of named tuples).

Accessing Tuple

with Indexing

Tuple1 = tuple("Geeks")

print("\nFirst element of Tuple: ")

print(Tuple1[0])

Tuple unpacking

Tuple1 = ("Geeks", "For", "Geeks")

This line unpack

values of Tuple1

https://www.geeksforgeeks.org/unpacking-a-tuple-in-python/

a, b, c = Tuple1

print("\nValues after unpacking: ")

print(a)

print(b)

print(c)

Output:

First element of Tuple:

G

Values after unpacking:

Geeks

For

Geeks

Tuple assignment

v An assignment to all of the elements in a tuple using a single assignment statement.

v Python has a very powerful tuple assignment feature that allows a tuple of variables on the left of an

assignment to be assigned values from a tuple on the right of the assignment.

v The left side is a tuple of variables; the right side is a tuple of values.

v Each value is assigned to its respective variable.

Example

fruits = ("apple", "banana", "cherry")

Output

("apple", "banana", "cherry")

Example

Unpacking a tuple:

fruits = ("apple", "banana", "cherry")

(green, yellow, red) = fruits

print(green)

print(yellow)

print(red)

 Output

Apple

Banana

Cherry

Tuples as return values

Functions can return tuples as return values.

Example

def circleInfo(r):

 """ Return (circumference, area) of a circle of radius r """

 c = 2 * 3.14159 * r

 a = 3.14159 * r * r

 return c, a

print(circleInfo(10))

 Output

62.8318, 314.159

Basic tuple operations

Basic Tuples Operations

Tuples respond to the + and * operators much like strings; they mean concatenation and repetition here too, except

that the result is a new tuple, not a string.

Python Expression Results Description

len((1, 2, 3)) 3 Length

(1, 2, 3) + (4, 5, 6) (1, 2, 3, 4, 5, 6) Concatenation

('Hi!',) * 4 ('Hi!', 'Hi!', 'Hi!', 'Hi!') Repetition

3 in (1, 2, 3) True Membership

for x in (1, 2, 3): print x, 1 2 3 Iteration

Built-in tuple functions

 Built-in functions are pre-defined in the programming language's library for the programming to directly call the

functions wherever required in the program for achieving certain functional operations.

 Built-in

Function Description

all() Returns true if all element are true or if tuple is empty

any()

return true if any element of the tuple is true. if tuple is empty, return

false

len() Returns length of the tuple or size of the tuple

enumerate() Returns enumerate object of tuple

max() return maximum element of given tuple

min() return minimum element of given tuple

sum() Sums up the numbers in the tuple

sorted() input elements in the tuple and return a new sorted list

tuple()
Convert an list to a tuple.

https://www.geeksforgeeks.org/python-all-function/
https://www.geeksforgeeks.org/python-any-function/
https://www.geeksforgeeks.org/python-string-length-len/
https://www.geeksforgeeks.org/enumerate-in-python/
https://www.geeksforgeeks.org/python-max-function/
https://www.geeksforgeeks.org/python-min-function/
https://www.geeksforgeeks.org/sum-function-python/
https://www.geeksforgeeks.org/sorted-function-python/
https://www.geeksforgeeks.org/python-tuple-function/

Example:

>>> T1=(10,20,30,40)

>>> len(T1)

4

#There are 4 element in tuple.

Example:

>>> T1=[10,20,30,40]

>>> max(T1)

40

40 is the maximum value in tuple T1.

Example 1:

>>> T1=[10,20,30,40]

>>> min(T1)

10

#10 is the minimum value.

Example 1:

>>> T1=[13,18,11,16,18,14]

>>> T1.count(18) #18 appears twice in tuple T1.

2

Example 2 – Creating a tuple from a list

>>>t=tuple([1,2,3])

>>>t

(1,2,3)

 List

Lists are used to store multiple items in a single variable.

Lists are one of 4 built-in data types in Python used to store collections of data, the other 3 are Tuple, Set,

and Dictionary, all with different qualities and usage.

Lists are created using square brackets

Example

Create a List:

thislist = ["apple", "banana", "cherry"]

print(thislist)

output

["apple", "banana", "cherry"]

Access Items

access the list items by referring to the index number

output

https://ladderpython.com/lesson/list-in-python-3-working-with-list-in-python/
https://www.w3schools.com/python/python_tuples.asp
https://www.w3schools.com/python/python_sets.asp
https://www.w3schools.com/python/python_dictionaries.asp

banana

Range of Indexes

can specify a range of indexes by specifying where to start and where to end the range.

When specifying a range, the return value will be a new list with the specified items.

Example

Return the third, fourth, and fifth item:

thislist = ["apple", "banana", "cherry", "orange", "kiwi", "melon", "mango"]

print(thislist[2:5])

output

"cherry", "orange", "kiwi"

Example

This example returns the items from the beginning to "orange":

thislist = ["apple", "banana", "cherry", "orange", "kiwi", "melon", "mango"]

print(thislist[:4])

output

["apple", "banana", "cherry", "orange",]

Traversing a list

One of the most common methods to traverse a Python list is to use a for loop, and they are very similar to other

programming languages. Alternatively, you can also use the range() method to have more control over your for

loop

Traversing Using For Loop and Range Method

Loop Through a List

You can loop through the list items by using a for loop:

Example

Print all items in the list, one by one:

thislist = ["apple", "banana", "cherry"]

for x in thislist:

 print(x)

output

apple

banana

cherry

Loop Through the Index Numbers

You can also loop through the list items by referring to their index number.

Use the range() and len() functions to create a suitable iterable.

Example

Print all items by referring to their index number:

thislist = ["apple", "banana", "cherry"]

for i in range(len(thislist)):

 print(thislist[i])

output

apple

banana

cherry

Using a While Loop

You can loop through the list items by using a while loop.

Use the len() function to determine the length of the list, then start at 0 and loop your way through the list items

by referring to their indexes.

Remember to increase the index by 1 after each iteration.

Example

Print all items, using a while loop to go through all the index numbers

thislist = ["apple", "banana", "cherry"]

i = 0

while i < len(thislist):

 print(thislist[i])

 i = i + 1

output

apple

banana

cherry

 Looping Using List Comprehension

List Comprehension offers the shortest syntax for looping through lists:

Example

A short hand for loop that will print all items in a list:

thislist = ["apple", "banana", "cherry"]

[print(x) for x in thislist]

output

apple

banana

cherry

Deleting elements from list

Remove Specified Item

The remove() method removes the specified item.

Example

Remove "banana":

thislist = ["apple", "banana", "cherry"]

thislist.remove("banana")

print(thislist)

output

["apple", "cherry"]

Remove Specified Index

The pop() method removes the specified index.

Example

Remove the second item:

thislist = ["apple", "banana", "cherry"]

thislist.pop(1)

print(thislist)

output

["apple", "cherry"]

If you do not specify the index, the pop() method removes the last item.

Example

Remove the last item:

thislist = ["apple", "banana", "cherry"]

thislist.pop()

print(thislist)

output

["apple", " banana "]

The del keyword also removes the specified index:

Example

Remove the first item:

thislist = ["apple", "banana", "cherry"]

del thislist[0]

print(thislist)

output

["banana", "cherry"]

The del keyword can also delete the list completely.

Example

Delete the entire list:

thislist = ["apple", "banana", "cherry"]

del thislist

output

NameError: name 'thislist' is not defined

Clear the List

The clear() method empties the list.

The list still remains, but it has no content.

Example

Clear the list content:

thislist = ["apple", "banana", "cherry"]

thislist.clear()

print(thislist)

output

[]

 Built-in list operators & methods

S.no Method Description

1 append() Used for appending and adding elements to the end of the List.

2 copy() It returns a shallow copy of a list

3 clear() This method is used for removing all items from the list.

4 count() These methods count the elements

5 extend() Adds each element of the iterable to the end of the List

6 index() Returns the lowest index where the element appears.

7 insert() Inserts a given element at a given index in a list.

8 pop()

 Removes and returns the last value from the List or the given index

value.

9 remove() Removes a given object from the List.

10 reverse() Reverses objects of the List in place.

11 sort() Sort a List in ascending, descending, or user-defined order

12 min() Calculates the minimum of all the elements of the List

13 max() Calculates the maximum of all the elements of the List

https://www.geeksforgeeks.org/python-list-append-method/
https://www.geeksforgeeks.org/copy-python-deep-copy-shallow-copy/
https://www.geeksforgeeks.org/python-list-clear-method/
https://www.geeksforgeeks.org/python-list-count-method/
https://www.geeksforgeeks.org/python-list-extend-method/
https://www.geeksforgeeks.org/python-list-index/
https://www.geeksforgeeks.org/python-list-insert/
https://www.geeksforgeeks.org/python-list-pop/
https://www.geeksforgeeks.org/python-list-remove/
https://www.geeksforgeeks.org/python-list-reverse/
https://www.geeksforgeeks.org/python-list-sort-method/
https://www.geeksforgeeks.org/python-min-function/
https://www.geeksforgeeks.org/python-max-function/

Dictionary

Dictionaries are used to store data values in key:value pairs.

A dictionary is a collection which is ordered*, changeable and do not allow duplicates.

Example

Dict = {1: 'Geeks', 2: 'For', 3: 'Geeks'}

print(Dict)

Output:

{1: 'Geeks', 2: 'For', 3: 'Geeks'}

Creating a Dictionary

In Python, a dictionary can be created by placing a sequence of elements within curly {} braces, separated by

‘comma’. Dictionary holds pairs of values, one being the Key and the other corresponding pair element being

its Key:value. Values in a dictionary can be of any data type and can be duplicated, whereas keys can’t be

repeated and must be immutable.

Creating a Dictionary

with Integer Keys

Dict = {1: 'Geeks', 2: 'For', 3: 'Geeks'}

print("\nDictionary with the use of Integer Keys: ")

https://www.geeksforgeeks.org/python-programming-language/

print(Dict)

 # Creating a Dictionary

with Mixed keys

Dict = {'Name': 'Geeks', 1: [1, 2, 3, 4]}

print("\nDictionary with the use of Mixed Keys: ")

print(Dict)

Output:

Dictionary with the use of Integer Keys:

{1: 'Geeks', 2: 'For', 3: 'Geeks'}

Dictionary with the use of Mixed Keys:

{'Name': 'Geeks', 1: [1, 2, 3, 4]}

Accessing elements of a Dictionary

In order to access the items of a dictionary refer to its key name. Key can be used inside square brackets.

 Python3

Python program to demonstrate

accessing a element from a Dictionary

Creating a Dictionary

Dict = {1: 'Geeks', 'name': 'For', 3: 'Geeks'}

 # accessing a element using key

print("Accessing a element using key:")

print(Dict['name'])

 # accessing a element using key

print("Accessing a element using key:")

print(Dict[1])

Output:

Accessing a element using key:

For

Accessing a element using key:

Geeks

Updating dictionary

The update() method inserts the specified items to the dictionary.

The specified items can be a dictionary, or an iterable object with key value pairs.

Syntax

dictionary.update(iterable)

Parameter Values

Parameter Description

iterable A dictionary or an iterable object with key value pairs, that will be inserted to the dictionary

Example

Insert an item to the dictionary:

car = {

 "brand": "Ford",

 "model": "Mustang",

 "year": 1964

}

car.update({"color": "White"})

print(car)

Output

{'brand': 'Ford', 'model': 'Mustang', 'year': 1964, 'color': 'White'}

Deleting elements from dictionary

Removing Items from a Dictionary

There are several methods to remove items from a dictionary:

Example

The pop() method removes the item with the specified key name:

thisdict = {

 "brand": "Ford",

 "model": "Mustang",

 "year": 1964

}

thisdict.pop("model")

output

{'brand': 'Ford', 'year': 1964}

Example

The del keyword removes the item with the specified key name:

thisdict = {

 "brand": "Ford",

 "model": "Mustang",

 "year": 1964

}

del thisdict["model"]

print(thisdict)

output

{'brand': 'Ford', 'year': 1964}

Operations in dictionary

1. Definition operations

 Built-in dictionary methods

Python has a set of built-in methods that you can use on dictionaries.

Method Description

clear() Removes all the elements from the dictionary

These operations allow us to define or create a dictionary.

1.1.{ }

Creates an empty dictionary or a dictionary with some initial values.

y = {}x = {1: "one", 2: "two", 3: "three"}

2. Mutable operations

These operations allow us to work with dictionaries, but altering or modifying their previous definition.

2.1. []

Adds a new pair of key and value to the dictionary, but in case that the key already exists in the dictionary,

we can update the value.

y = {}

https://www.w3schools.com/python/ref_dictionary_clear.asp

copy() Returns a copy of the dictionary

fromkeys() Returns a dictionary with the specified keys and value

get() Returns the value of the specified key

items() Returns a list containing a tuple for each key value pair

keys() Returns a list containing the dictionary's keys

pop() Removes the element with the specified key

popitem() Removes the last inserted key-value pair

setdefault() Returns the value of the specified key. If the key does not exist: insert the key, with the specified value

update() Updates the dictionary with the specified key-value pairs

values() Returns a list of all the values in the dictionary

https://www.w3schools.com/python/ref_dictionary_copy.asp
https://www.w3schools.com/python/ref_dictionary_fromkeys.asp
https://www.w3schools.com/python/ref_dictionary_get.asp
https://www.w3schools.com/python/ref_dictionary_items.asp
https://www.w3schools.com/python/ref_dictionary_keys.asp
https://www.w3schools.com/python/ref_dictionary_pop.asp
https://www.w3schools.com/python/ref_dictionary_popitem.asp
https://www.w3schools.com/python/ref_dictionary_setdefault.asp
https://www.w3schools.com/python/ref_dictionary_update.asp
https://www.w3schools.com/python/ref_dictionary_values.asp

UNIT III

FILES AND EXCEPTIONS

Introduction to File Input and Output

The file handling plays an important role when the data needs to be stored permanently into the file. A file is a

named location on disk to store related information. We can access the stored information (non-volatile) after the

program termination.

The file-handling implementation is slightly lengthy or complicated in the other programming language, but it is

easier and shorter in Python.

In Python, files are treated in two modes as text or binary. The file may be in the text or binary format, and each

line of a file is ended with the special character.

Hence, a file operation can be done in the following order.

o Open a file

o Read or write - Performing operation

o Close the file

Opening a file

Python provides an open() function that accepts two arguments, file name and access mode in which the file is

accessed. The function returns a file object which can be used to perform various operations like reading, writing,

etc.

Syntax:

file object = open(<file-name>, <access-mode>, <buffering>)

The files can be accessed using various modes like read, write, or append. The following are the details about the

access mode to open a file.

SN Access

mode

Description

1 r It opens the file to read-only mode. The file pointer exists at the beginning.

The file is by default open in this mode if no access mode is passed.

2 rb It opens the file to read-only in binary format. The file pointer exists at the

beginning of the file.

3 r+ It opens the file to read and write both. The file pointer exists at the

beginning of the file.

4 rb+ It opens the file to read and write both in binary format. The file pointer

exists at the beginning of the file.

5 w It opens the file to write only. It overwrites the file if previously exists or

creates a new one if no file exists with the same name. The file pointer

exists at the beginning of the file.

6 wb It opens the file to write only in binary format. It overwrites the file if it

exists previously or creates a new one if no file exists. The file pointer

exists at the beginning of the file.

7 w+ It opens the file to write and read both. It is different from r+ in the sense

that it overwrites the previous file if one exists whereas r+ doesn't

overwrite the previously written file. It creates a new file if no file exists.

The file pointer exists at the beginning of the file.

8 wb+ It opens the file to write and read both in binary format. The file pointer

exists at the beginning of the file.

9 a It opens the file in the append mode. The file pointer exists at the end of the

previously written file if exists any. It creates a new file if no file exists

with the same name.

10 ab It opens the file in the append mode in binary format. The pointer exists at

the end of the previously written file. It creates a new file in binary format

if no file exists with the same name.

11 a+ It opens a file to append and read both. The file pointer remains at the end

of the file if a file exists. It creates a new file if no file exists with the same

name.

12 ab+ It opens a file to append and read both in binary format. The file pointer

remains at the end of the file.

The simple example to open a file named "file.txt" (stored in the same directory) in read mode and printing its

content on the console.

Example

#opens the file file.txt in read mode

fileptr = open("file.txt","r")

if fileptr:

 print("file is opened successfully")

Output:

<class '_io.TextIOWrapper'>

file is opened successfully

In the above code, passed filename as a first argument and opened file in read mode as we mentioned r as the

second argument. The fileptr holds the file object and if the file is opened successfully, it will execute the print

statement.

The close() method

Once all the operations are done on the file, we must close it through our Python script using the close() method.

Any unwritten information gets destroyed once the close() method is called on a file object.

We can perform any operation on the file externally using the file system which is the currently opened in Python;

hence it is good practice to close the file once all the operations are done.

The syntax to use the close() method is given below.

Syntax

fileobject.close()

Consider the following example.

opens the file file.txt in read mode

fileptr = open("file.txt","r")

if fileptr:

 print("file is opened successfully")

#closes the opened file

fileptr.close()

NOTE

After closing the file, we cannot perform any operation in the file. The file needs to be properly closed. If any

exception occurs while performing some operations in the file then the program terminates without closing the file.

We should use the following method to overcome such type of problem.

try:

 fileptr = open("file.txt")

 # perform file operations

finally:

 fileptr.close()

The with statement

The with statement was introduced in python 2.5. The with statement is useful in the case of manipulating the files.

It is used in the scenario where a pair of statements is to be executed with a block of code in between.

The syntax to open a file using with the statement is given below.

with open(<file name>, <access mode>) as <file-pointer>:

 #statement suite

The advantage of using with statement is that it provides the guarantee to close the file regardless of how the

nested block exits.

It is always suggestible to use the with statement in the case of files because, if the break, return, or exception

occurs in the nested block of code then it automatically closes the file, we don't need to write the close() function.

It doesn't let the file to corrupt.

Consider the following example.

Example

with open("file.txt",'r') as f:

 content = f.read();

 print(content)

Writing the file

To write some text to a file, we need to open the file using the open method with one of the following access

modes.

w: It will overwrite the file if any file exists. The file pointer is at the beginning of the file.

a: It will append the existing file. The file pointer is at the end of the file. It creates a new file if no file exists.

Consider the following example.

Example

open the file.txt in append mode. Create a new file if no such file exists.

fileptr = open("file2.txt", "w")

appending the content to the file

fileptr.write('''''Python is the modern day language. It makes things so simple.

It is the fastest-growing programing language''')

closing the opened the file

fileptr.close()

Output:

File2.txt

Python is the modern-day language. It makes things so simple. It is the fastest growing programming language.

Snapshot of the file2.txt

We have opened the file in w mode. The file1.txt file doesn't exist, it created a new file and we have written the content in the file using

the write() function.

Example 2

1. #open the file.txt in write mode.

2. fileptr = open("file2.txt","a")

3.

4. #overwriting the content of the file

5. fileptr.write(" Python has an easy syntax and user-friendly interaction.")

6.

7. #closing the opened file

8. fileptr.close()

Output:

Python is the modern day language. It makes things so simple.

It is the fastest growing programing language Python has an easy syntax and user-friendly interaction.

Snapshot of the file2.txt

We can see that the content of the file is modified. We have opened the file in a mode and it appended the content in the

existing file2.txt.

To read a file using the Python script, the Python provides the read() method. The read() method reads a string from the file. It can

read the data in the text as well as a binary format.

The syntax of the read() method is given below.

Syntax:

1. fileobj.read(<count>)

Here, the count is the number of bytes to be read from the file starting from the beginning of the file. If the count is not specified, then

it may read the content of the file until the end.

Consider the following example.

Example

1. #open the file.txt in read mode. causes error if no such file exists.

2. fileptr = open("file2.txt","r")

3. #stores all the data of the file into the variable content

4. content = fileptr.read(10)

5. # prints the type of the data stored in the file

6. print(type(content))

7. #prints the content of the file

8. print(content)

9. #closes the opened file

10. fileptr.close()

Output:

<class 'str'>

Python is

In the above code, we have read the content of file2.txt by using the read() function. We have passed count value as ten which means it

will read the first ten characters from the file.

If we use the following line, then it will print all content of the file.

1. content = fileptr.read()

2. print(content)

Output:

Python is the modern-day language. It makes things so simple.

It is the fastest-growing programing language Python has easy an syntax and user-friendly interaction.

Read file through for loop

We can read the file using for loop. Consider the following example.

1. #open the file.txt in read mode. causes an error if no such file exists.

2. fileptr = open("file2.txt","r");

3. #running a for loop

4. for i in fileptr:

5. print(i) # i contains each line of the file

Output:

Python is the modern day language.

It makes things so simple.

Python has easy syntax and user-friendly interaction.

Read Lines of the file

Python facilitates to read the file line by line by using a function readline() method. The readline() method reads the lines of the file

from the beginning, i.e., if we use the readline() method two times, then we can get the first two lines of the file.

Consider the following example which contains a function readline() that reads the first line of our file "file2.txt" containing three

lines. Consider the following example.

Example 1: Reading lines using readline() function

1. #open the file.txt in read mode. causes error if no such file exists.

2. fileptr = open("file2.txt","r");

3. #stores all the data of the file into the variable content

4. content = fileptr.readline()

5. content1 = fileptr.readline()

6. #prints the content of the file

7. print(content)

8. print(content1)

9. #closes the opened file

10. fileptr.close()

Output:

Python is the modern day language.

It makes things so simple.

We called the readline() function two times that's why it read two lines from the file.

Python provides also the readlines() method which is used for the reading lines. It returns the list of the lines till the end

of file(EOF) is reached.

Example 2: Reading Lines Using readlines() function

1. #open the file.txt in read mode. causes error if no such file exists.

2. fileptr = open("file2.txt","r");

3.

4. #stores all the data of the file into the variable content

5. content = fileptr.readlines()

6.

7. #prints the content of the file

8. print(content)

9.

10. #closes the opened file

11. fileptr.close()

Output:

['Python is the modern day language.\n', 'It makes things so simple.\n', 'Python has easy syntax and user-friendly interaction.']

Creating a new file

The new file can be created by using one of the following access modes with the function open().

x: it creates a new file with the specified name. It causes an error a file exists with the same name.

a: It creates a new file with the specified name if no such file exists. It appends the content to the file if the file already exists with the

specified name.

w: It creates a new file with the specified name if no such file exists. It overwrites the existing file.

Consider the following example.

Example 1

1. #open the file.txt in read mode. causes error if no such file exists.

2. fileptr = open("file2.txt","x")

3. print(fileptr)

4. if fileptr:

5. print("File created successfully")

Output:

<_io.TextIOWrapper name='file2.txt' mode='x' encoding='cp1252'>

File created successfully

File Pointer positions

Python provides the tell() method which is used to print the byte number at which the file pointer currently exists. Consider the

following example.

1. # open the file file2.txt in read mode

2. fileptr = open("file2.txt","r")

3.

4. #initially the filepointer is at 0

5. print("The filepointer is at byte :",fileptr.tell())

6.

7. #reading the content of the file

8. content = fileptr.read();

9.

10. #after the read operation file pointer modifies. tell() returns the location of the fileptr.

11.

12. print("After reading, the filepointer is at:",fileptr.tell())

Output:

The filepointer is at byte : 0

After reading, the filepointer is at: 117

Modifying file pointer position

In real-world applications, sometimes we need to change the file pointer location externally since we may need to read or write the

content at various locations.

For this purpose, the Python provides us the seek() method which enables us to modify the file pointer position externally.

The syntax to use the seek() method is given below.

Syntax:

1. <file-ptr>.seek(offset[, from)

The seek() method accepts two parameters:

offset: It refers to the new position of the file pointer within the file.

from: It indicates the reference position from where the bytes are to be moved. If it is set to 0, the beginning of the file is used as the

reference position. If it is set to 1, the current position of the file pointer is used as the reference position. If it is set to 2, the end of the

file pointer is used as the reference position.

Consider the following example.

Example

1. # open the file file2.txt in read mode

2. fileptr = open("file2.txt","r")

3.

4. #initially the filepointer is at 0

5. print("The filepointer is at byte :",fileptr.tell())

6.

7. #changing the file pointer location to 10.

8. fileptr.seek(10);

9.

10. #tell() returns the location of the fileptr.

11. print("After reading, the filepointer is at:",fileptr.tell())

Output:

The filepointer is at byte : 0

After reading, the filepointer is at: 10

Renaming the file

The Python os module enables interaction with the operating system. The os module provides the functions that are involved in file

processing operations like renaming, deleting, etc. It provides us the rename() method to rename the specified file to a new name. The

syntax to use the rename() method is given below.

Syntax:

1. rename(current-name, new-name)

The first argument is the current file name and the second argument is the modified name. We can change the file name bypassing these

two arguments.

Example 1:

1. import os

2.

3. #rename file2.txt to file3.txt

4. os.rename("file2.txt","file3.txt")

Output:

The above code renamed current file2.txt to file3.txt

Removing the file

The os module provides the remove() method which is used to remove the specified file. The syntax to use the remove() method is

given below.

1. remove(file-name)

Example 1

1. import os;

2. #deleting the file named file3.txt

3. os.remove("file3.txt")

Creating the new directory

The mkdir() method is used to create the directories in the current working directory. The syntax to create the new directory is given

below.

Syntax:

1. mkdir(directory name)

Example 1

1. import os

2.

3. #creating a new directory with the name new

4. os.mkdir("new")

The getcwd() method

This method returns the current working directory.

The syntax to use the getcwd() method is given below.

Syntax

1. os.getcwd()

Example

1. import os

2. os.getcwd()

Output:

'C:\\Users\\DEVANSH SHARMA'

Changing the current working directory

The chdir() method is used to change the current working directory to a specified directory.

The syntax to use the chdir() method is given below.

Syntax

1. chdir("new-directory")

Example

1. import os

2. # Changing current directory with the new directiory

3. os.chdir("C:\\Users\\DEVANSH SHARMA\\Documents")

4. #It will display the current working directory

5. os.getcwd()

Output:

'C:\\Users\\DEVANSH SHARMA\\Documents'

Deleting directory

The rmdir() method is used to delete the specified directory.

The syntax to use the rmdir() method is given below.

Syntax

1. os.rmdir(directory name)

Example 1

1. import os

2. #removing the new directory

3. os.rmdir("directory_name")

It will remove the specified directory.

Writing Python output to the files

In Python, there are the requirements to write the output of a Python script to a file.

The check_call() method of module subprocess is used to execute a Python script and write the output of that script to a file.

The following example contains two python scripts. The script file1.py executes the script file.py and writes its output to the text

file output.txt.

Example

file.py

1. temperatures=[10,-20,-289,100]

2. def c_to_f(c):

3. if c< -273.15:

4. return "That temperature doesn't make sense!"

5. else:

6. f=c*9/5+32

7. return f

8. for t in temperatures:

9. print(c_to_f(t))

file.py

1. import subprocess

2.

3. with open("output.txt", "wb") as f:

4. subprocess.check_call(["python", "file.py"], stdout=f)

The file related methods

The file object provides the following methods to manipulate the files on various operating systems.

SN Method Description

1 file.close() It closes the opened file. The file once closed, it

can't be read or write anymore.

2 File.fush() It flushes the internal buffer.

3 File.fileno() It returns the file descriptor used by the underlying

implementation to request I/O from the OS.

4 File.isatty() It returns true if the file is connected to a TTY

device, otherwise returns false.

5 File.next() It returns the next line from the file.

6 File.read([size]) It reads the file for the specified size.

7 File.readline([size]) It reads one line from the file and places the file

pointer to the beginning of the new line.

8 File.readlines([sizehint]) It returns a list containing all the lines of the file. It

reads the file until the EOF occurs using readline()

function.

9 File.seek(offset[,from) It modifies the position of the file pointer to a

specified offset with the specified reference.

10 File.tell() It returns the current position of the file pointer

within the file.

11 File.truncate([size]) It truncates the file to the optional specified size.

12 File.write(str) It writes the specified string to a file

13 File.writelines(seq) It writes a sequence of the strings to a file.

https://www.javatpoint.com/aws-tutorial

Using loops to process files Processing Records

Using a For Loop

The most common way to iterate over files in a directory using Python is by using a for loop. To use a for loop to

iterate over files in a directory, we first need to use the os.listdir() function to get a list of all files in the

directory. We can then use the for statement to loop over each file and perform the desired operation.

Example:

In the Python code above, we first define the directory containing the files that we want to iterate over. We then use

the os.listdir() function to get a list of all files in the directory. We then use a for loop to loop over each file in the

directory. We use the if statement to check if the file has a “.txt” extension, and if it does, we open the file and print

its content

Using a While Loop

Another way to iterate over files in Python is by using a while loop. To use a while loop to iterate over files in a

directory, we first need to use the os.listdir() function to get a list of all files in the directory. We can then use

a while loop to loop over each file and perform the desired operation.

Example:

https://pieriantraining.com/skip-a-value-in-a-list-in-python/
https://medium.com/techtofreedom/5-ways-to-list-files-of-a-directory-in-python-dafb787b07a2

In the code above, we first define the directory that we want to iterate over. We then use the os.listdir() function to

get a list of all files in the directory. We then use a while loop to loop over each file in the directory. We use

the if statement to check if the file has a “.txt” extension, and if it does, we open the file and print its contents. We

also use an index variable to keep track of the current file being processed.

Using the os module

The os module in Python provides several functions for working with files and directories. One of these functions

is os.walk(), which we can use to iterate over files in a directory. The os.walk() function traverses a directory tree

and returns a tuple of the current directory, all subdirectories, and all filenames in the current directory.

Example:

https://pythontic.com/modules/os/walk

In the code above, we first define the directory that we want to iterate over. We then use the os.walk() function to

traverse the directory tree and get a tuple of the current directory, subdirectories, and filenames. We then use a

nested for loop to loop over each filename and check if it has a “.txt” extension. If it does, we open the file and

print its contents.

Using the glob module

The glob module in Python provides a function for working with file paths. The glob.glob() function allows us

to search for files in a directory using a pattern. We can use the glob.glob() function to iterate over files in a

directory by specifying a pattern that matches the files we want to process.

Example:

https://www.fullchipdesign.com/pythonglob.htm

Using the pathlib module

The pathlib module in Python provides a path object that we can use to work with file paths.

The pathlib.Path() class provides several methods for working with files and directories, including glob(),

which we can use to iterate over files in a directory.

Example:

Exception in Python

Exceptions are raised when some internal events occur which change the normal flow of the program.

Try and Except Statement – Catching Exceptions

Try and except statements are used to catch and handle exceptions in Python. Statements that can raise

exceptions are kept inside the try clause and the statements that handle the exception are written inside except

clause.

Example: Let us try to access the array element whose index is out of bound and handle the corresponding

exception.

https://towardsdatascience.com/10-examples-to-master-python-pathlib-1249cc77de0b

NOTE

In the above example, the statements that can cause the error are placed inside the try statement (second print

statement in our case). The second print statement tries to access the fourth element of the list which is not there

and this throws an exception. This exception is then caught by the except statement.

Catching Specific Exception

A try statement can have more than one except clause, to specify handlers for different exceptions. Please note

that at most one handler will be executed. For example, we can add IndexError in the above code. The general

syntax for adding specific exceptions are –

try:

 # statement(s)

exceptIndexError:

 # statement(s)

exceptValueError:

 # statement(s)

Example: Catching specific exceptions in the Python

Try with Else Clause

In Python, you can also use the else clause on the try-except block which must be present after all the except

clauses. The code enters the else block only if the try clause does not raise an exception.

Example: Try with else clause

Finally Keyword in Python

Python provides a keyword finally, which is always executed after the try and except blocks. The final block

always executes after the normal termination of the try block or after the try block terminates due to some

exception.

Syntax:

try:

 # Some Code....

except:

 # optional block

https://www.geeksforgeeks.org/finally-keyword-in-python/

 # Handling of exception (if required)

else:

 # execute if no exception

finally:

 # Some code(always executed)

Raising Exception

The raise statement allows the programmer to force a specific exception to occur. The sole argument in raise

indicates the exception to be raised. This must be either an exception instance or an exception class (a class that

derives from Exception).

https://www.geeksforgeeks.org/python-raising-an-exception-to-another-exception/

Advantages of Exception Handling:

 Improved program reliability: By handling exceptions properly, you can prevent your program from

crashing or producing incorrect results due to unexpected errors or input.

 Simplified error handling: Exception handling allows you to separate error handling code from the main

program logic, making it easier to read and maintain your code.

 Cleaner code: With exception handling, you can avoid using complex conditional statements to check for

errors, leading to cleaner and more readable code.

 Easier debugging: When an exception is raised, the Python interpreter prints a traceback that shows the

exact location where the exception occurred, making it easier to debug your code.

Disadvantages of Exception Handling:

 Performance overhead: Exception handling can be slower than using conditional statements to check for

errors, as the interpreter has to perform additional work to catch and handle the exception.

 Increased code complexity: Exception handling can make your code more complex, especially if you have

to handle multiple types of exceptions or implement complex error handling logic.

 Possible security risks: Improperly handled exceptions can potentially reveal sensitive information or create

security vulnerabilities in your code, so it’s important to handle exceptions carefully and avoid exposing too

much information about your program.

Classes and Objects in Python:

Classes in Python:

In Python, a class is a user-defined data type that contains both the data itself and the methods that may be used to

manipulate it. In a sense, classes serve as a template to create objects. They provide the characteristics and

operations that the objects will employ.

Suppose a class is a prototype of a building. A building contains all the details about the floor, rooms, doors,

windows, etc. we can make as many buildings as we want, based on these details. Hence, the building can be seen

as a class, and we can create as many objects of this class.

Creating Classes in Python

In Python, a class can be created by using the keyword class, followed by the class name. The syntax to create a

class is given below.

Syntax

class ClassName:

 #statement_suite

Example:

Objects in Python:

An object is a particular instance of a class with unique characteristics and functions. After a class has been

established, you may make objects based on it. By using the class constructor, you may create an object of a class

in Python. The object's attributes are initialised in the constructor, which is a special procedure with the name

__init__.

Syntax:

Declare an object of a class

object_name = Class_Name(arguments)

Example:

Python OOPs Concepts

Like other general-purpose programming languages, Python is also an object-oriented language since its beginning.

It allows us to develop applications using an Object-Oriented approach. In Python, we can easily create and use

classes and objects.

An object-oriented paradigm is to design the program using classes and objects. The object is related to real-word

entities such as book, house, pencil, etc. The oops concept focuses on writing the reusable code. It is a widespread

technique to solve the problem by creating objects.

Major principles of object-oriented programming system are given below

o Class

o Object

o Method

https://www.javatpoint.com/python-tutorial

o Inheritance

o Polymorphism

o Data Abstraction

o Encapsulation

Class

The class can be defined as a collection of objects. It is a logical entity that has some specific attributes and

methods. For example: if you have an employee class, then it should contain an attribute and method, i.e. an email

id, name, age, salary, etc.

Syntax

class ClassName:

 <statement-1>

 .

 .

 <statement-N>

Object

The object is an entity that has state and behavior. It may be any real-world object like the mouse, keyboard, chair,

table, pen, etc.

Everything in Python is an object, and almost everything has attributes and methods. All functions have a built-in

attribute __doc__, which returns the docstring defined in the function source code.

When we define a class, it needs to create an object to allocate the memory. Consider the following example.

Example:

class car:

 def __init__(self,modelname, year):

 self.modelname = modelname

 self.year = year

 def display(self):

 print(self.modelname,self.year)

c1 = car("Toyota", 2016)

c1.display()

Output:

Toyota 2016

In the above example, we have created the class named car, and it has two attributes modelname and year. We have

created a c1 object to access the class attribute.

Method

The method is a function that is associated with an object. In Python, a method is not unique to class instances.

Any object type can have methods.

Inheritance

Inheritance is the most important aspect of object-oriented programming, which simulates the real-world concept

of inheritance. It specifies that the child object acquires all the properties and behaviors of the parent object.

By using inheritance, we can create a class which uses all the properties and behavior of another class. The new

class is known as a derived class or child class, and the one whose properties are acquired is known as a base class

or parent class.

It provides the re-usability of the code.

Polymorphism

Polymorphism contains two words "poly" and "morphs". Poly means many, and morph means shape. By

polymorphism, we understand that one task can be performed in different ways. For example - you have a class

animal, and all animals speak. But they speak differently. Here, the "speak" behavior is polymorphic in a sense and

depends on the animal. So, the abstract "animal" concept does not actually "speak", but specific animals (like dogs

and cats) have a concrete implementation of the action "speak".

Encapsulation

Encapsulation is also an essential aspect of object-oriented programming. It is used to restrict access to methods

and variables. In encapsulation, code and data are wrapped together within a single unit from being modified by

accident.

Data Abstraction

Data abstraction and encapsulation both are often used as synonyms. Both are nearly synonyms because data

abstraction is achieved through encapsulation.

Abstraction is used to hide internal details and show only functionalities. Abstracting something means to give

names to things so that the name captures the core of what a function or a whole program does.

Protected Members

Protected members in C++ and Java are members of a class that can only be accessed within the class but cannot

be accessed by anyone outside it. This can be done in Python by following the convention and prefixing the name

with a single underscore.

The protected variable can be accessed from the class and in the derived classes (it can also be modified in the

derived classes), but it is customary to not access it out of the class body.

The __init__ method, which is a constructor, runs when an object of a type is instantiated.

Example:

Python program for demonstrating protected members

first, we will create the base class

class Base1:

 def __init__(self):

 # the protected member

 self._p = 78

here, we will create the derived class

class Derived1(Base):

 def __init__(self):

now, we will call the constructor of Base class

 Base1.__init__(self)

 print ("We will call the protected member of base class: ",

 self._p)

Now, we will be modifing the protected variable:

 self._p = 433

 print ("we will call the modified protected member outside the class: ",

 self._p)

obj_1 = Derived1()

obj_2 = Base1()

here, we will call the protected member

this can be accessed but it should not be done because of convention

print ("Access the protected member of obj_1: ", obj_1._p)

 # here, we will access the protected variable outside

print ("Access the protected member of obj_2: ", obj_2._p)

Output:

We will call the protected member of base class: 78

we will call the modified protected member outside the class: 433

Access the protected member of obj_1: 433

Access the protected member of obj_2: 78

Private Members

Private members are the same as protected members. The difference is that class members who have been declared

private should not be accessed by anyone outside the class or any base classes. Python does not have Private

instance variable variables that can be accessed outside of a class.

However, to define a private member, prefix the member's name with a double underscore "__".

Python's private and secured members can be accessed from outside the class using Python name mangling.

Example:

class Base1:

 def __init__(self):

 self.p = "Javatpoint"

 self.__q = "Javatpoint"

Creating a derived class

class Derived1(Base1):

 def __init__(self):

Calling constructor of

Base class

 Base1.__init__(self)

 print("We will call the private member of base class: ")

 print(self.__q)

Driver code

obj_1 = Base1()

print(obj_1.p)

Output:

Javatpoint

Polymorphism in Python

Polymorphism refers to having multiple forms. Polymorphism is a programming term that refers to the use of the

same function name, but with different signatures, for multiple types.

Example

x = "Hello World!"

print(len(x))

mytuple = ("apple", "banana", "cherry")

print(len(mytuple))

thisdict = {

 "brand": "Ford",

 "model": "Mustang",

 "year": 1964

}

print(len(thisdict))

Output

12

3

3

Classes in Python:

In Python, a class is a user-defined data type that contains both the data itself and the methods that may be used to

manipulate it. In a sense, classes serve as a template to create objects. They provide the characteristics and

operations that the objects will employ.

Suppose a class is a prototype of a building. A building contains all the details about the floor, rooms, doors,

windows, etc. we can make as many buildings as we want, based on these details. Hence, the building can be seen

as a class, and we can create as many objects of this class.

Creating Classes in Python

In Python, a class can be created by using the keyword class, followed by the class name. The syntax to create a

class is given below.

Syntax

class ClassName:

 #statement_suite

Note:

A class contains a statement suite including fields, constructor, function, etc. definition.

Example:

class Person:

 def __init__(self, name, age):

 # This is the constructor method that is called when creating a new Person object

 # It takes two parameters, name and age, and initializes them as attributes of the object

 self.name = name

 self.age = age

def greet(self):

 # This is a method of the Person class that prints a greeting message

 print("Hello, my name is " + self.name)

Note:

Name and age are the two properties of the Person class. Additionally, it has a function called greet that prints a

greeting.

Objects in Python:

An object is a particular instance of a class with unique characteristics and functions. After a class has been

established, you may make objects based on it. By using the class constructor, you may create an object of a class

in Python. The object's attributes are initialised in the constructor, which is a special procedure with the name

__init__.

Syntax:

Declare an object of a class

object_name = Class_Name(arguments)

Example:

class Person:

 def __init__(self, name, age):

 self.name = name

 self.age = age

 def greet(self):

 print("Hello, my name is " + self.name)

Create a new instance of the Person class and assign it to the variable person1

person1 = Person("Ayan", 25)

person1.greet()

Output:

"Hello, my name is Ayan"

Python Inheritance

Inheritance provides code reusability to the program because we can use an existing class to create a new class

instead of creating it from scratch.

In inheritance, the child class acquires the properties and can access all the data members and functions defined in

the parent class. A child class can also provide its specific implementation to the functions of the parent class

Syntax

class derived-class(base class):

 <class-suite>

A class can inherit multiple classes by mentioning all of them inside the bracket. Consider the following syntax.

Syntax

class derive-class(<base class 1>, <base class 2>, <base class n>):

 <class - suite>

Python Multi-Level inheritance

Multi-Level inheritance is possible in python like other object-oriented languages. Multi-level inheritance is

archived when a derived class inherits another derived class. There is no limit on the number of levels up to which,

the multi-level inheritance is archived in python.

Syntax

class class1:

 <class-suite>

class class2(class1):

 <class suite>

class class3(class2):

 <class suite>

.

.

Output:

dog barking

Animal Speaking

Eating bread...

Python Multiple inheritance

Python provides us the flexibility to inherit multiple base classes in the child class.

Output:

30

200

0.5

Method Overriding in Python

Any object-oriented programming language can allow a subclass or child class to offer a customized

implementation of a method already supplied by one of its superclasses or parent classes. This capability is known

as method overriding. The term "override" refers to a method in a subclass that replaces a method in a superclass

when both methods share the same name, parameters, signature, and return type (or sub-type).

The object that calls a method will determine which version of the method is executed. When a method is called

from an object of a parent class, the method's parent class version is executed; however, when a method is called

from an object of a subclass, the child class version is executed. In other words, the version of an overridden

method depends on the object being referenced, not the type of the reference variable.

Example

Output:

Inside Parent

Inside Child

Encapsulation in Python

Encapsulation is one of the most fundamental concepts in object-oriented programming (OOP). This is the concept

of wrapping data and methods that work with data in one unit. This prevents data modification accidentally by

limiting access to variables and methods. An object's method can change a variable's value to prevent accidental

changes. These variables are called private variables.

Encapsulation is demonstrated by a class which encapsulates all data, such as member functions, variables, and so

forth.

*Protected Members #refer Data Abstraction

*Private Members

Data Hiding in Python

Data hiding is a part of object-oriented programming, which is generally used to hide the data information from the

user. It includes internal object details such as data members, internal working. It maintained the data integrity and

restricted access to the class member. The main working of data hiding is that it combines the data and functions

into a single unit to conceal data within a class. We cannot directly access the data from outside the class.

UNIT IV

DATA MANIPULATION TOOLS & SOFTWARES

NumPy

NumPy is a Python library used for working with arrays.

It also has functions for working in domain of linear algebra, fourier transform, and matrices.

NumPy was created in 2005 by Travis Oliphant. It is an open source project and you can use it freely.

NumPy stands for Numerical Python.

 Use NumPy

In Python we have lists that serve the purpose of arrays, but they are slow to process.

NumPy aims to provide an array object that is up to 50x faster than traditional Python lists.

The array object in NumPy is called ndarray, it provides a lot of supporting functions that make working

with ndarray very easy.

Arrays are very frequently used in data science, where speed and resources are very important.

Numpy: Installation

To run the NumPy program, first, Numpy needs to be installed. Numpy is installed from Python's official

website using pip and conda by running different commands on different operating systems. Many important

packages are automatically installed within the Numpy library.

NOTE:

It is mandatory to install Python from Python's official website before installing NumPy.

Installing Numpy on Windows:

Steps for installing NumPy on Windows:

https://www.python.org/
https://www.python.org/
https://www.python.org/

1. Install NumPy using the following PIP command in the command prompt terminal:

The installation will start automatically, and Numpy will be successfully installed with its latest version.

2. Verify NumPy Installation by typing the command given below in cmd:

pip show Numpy

It will show the location and numpy version installed.

3. Import NumPy Package

1. Create python Environment in cmd by typing:Python

2. Type command import numpy as np

4. Upgrade NumPy by using the following command:

Ndarray

Ndarray is the n-dimensional array object defined in the numpy which stores the collection of the similar type of

elements. In other words, we can define andarray as the collection of the data type (dtype) objects.

The ndarray object can be accessed by using the 0 based indexing. Each element of the Array object contains the

same size in the memory.

Creating a ndarray object

The ndarray object can be created by using the array routine of the numpy module. For this purpose, we need to

import the numpy.

>>> a = numpy.array

We can also pass a collection object into the array routine to create the equivalent n-dimensional array. The syntax

is given below.

>>> numpy.array(object, dtype = None, copy = True, order = None, subok = False, ndmin = 0)

The parameters are described in the following table.

To create an array using the list, use the following syntax.

>>> a = numpy.array([1, 2, 3])

To create a multi-dimensional array object, use the following syntax.

>>> a = numpy.array([[1, 2, 3], [4, 5, 6]])

To change the data type of the array elements, mention the name of the data type along with the collection.

>>> a = numpy.array([1, 3, 5, 7], complex)

Finding the dimensions of the Array

The ndim function can be used to find the dimensions of the array.

>>> import numpy as np

>>> arr = np.array([[1, 2, 3, 4], [4, 5, 6, 7], [9, 10, 11, 23]])

 >>> print(arr.ndim)

NumPy Array Slicing

Array Slicing is the process of extracting a portion of an array.

With slicing, we can easily access elements in the array. It can be done on one or more dimensions of a NumPy

array.

Syntax

array[start:stop:step]

Here,

 start - index of the first element to be included in the slice

 stop - index of the last element (exclusive)

 step - step size between each element in the slice

Note: When we slice arrays, the start index is inclusive but the stop index is exclusive.

 If we omit start, slicing starts from the first element

 If we omit stop, slicing continues up to the last element

 If we omit step, default step size is 1

Output

[5 7 8 9]

[1 5 8 2]

[7 8 9 2 4 6]

[1 3 5 7 8 9 2 4 6]

>

Array indexing

Array indexing is the same as accessing an array element.

You can access an array element by referring to its index number.

The indexes in NumPy arrays start with 0, meaning that the first element has index 0, and the second has index 1

etc.

Example

import numpy as np

arr = np.array([1, 2, 3, 4])

print(arr[0])

Output

>1

Example

Get the second element from the following array.

import numpy as np

arr = np.array([1, 2, 3, 4])

print(arr[1])

Output

>2

NumPy Array Iterating

Iterating means going through elements one by one.

Example

Iterate on the elements of the following 1-D array:

import numpy as np

arr = np.array([1, 2, 3])

for x in arr:

 print(x)

Output

 >1

 2

 3

Shape Manipulation

The numpy.reshape() function is used to change the shape (dimensions) of an array without changing its data. This

function returns a new array with the same data but with a different shape.

The numpy.reshape() function is useful when we need to change the dimensions of an array, for example, when we

want to convert a one-dimensional array into a two-dimensional array or vice versa. It can also be used to create

arrays with a specific shape, such as matrices and tensors.

Syntax:

numpy.reshape(a, newshape, order='C')

Here

A - Array to be reshaped

newshape - The new shape should be compatible with the original shape

order - Read the elements of a using this index order, and place the elements into the

 reshaped array using this index order. ‘C’ means to read / write the elements using

 C -like index order, with the last axis index changing fastest, back to the first axis

 index changing slowest.‘F’ means to read / write the elements using Fortran-like

 index order.

Example

>>> import numpy as np

>>> x = np.array([[2,3,4], [5,6,7]])

>> np.reshape(x, (3, 2))

 array([[2, 3],

 [4, 5],

 [6, 7]])

Output

Array Manipulation

Arrays are used to store multiple values in one single variable.

Example

Create an array containing car names:

cars = ["Ford", "Volvo", "BMW"]

print(cars)

Output

["Ford", "Volvo", "BMW"]

Access the Elements of an Array

You refer to an array element by referring to the index number.

Example

Get the value of the first array item:

x = cars[0]

Output

Ford

Example

Modify the value of the first array item:

cars[0] = "Toyota"

print(cars)

Output

["Toyota", "Volvo", "BMW"]

The Length of an Array

Use the len() method to return the length of an array (the number of elements in an array).

Example

Return the number of elements in the cars array:

x = len(cars)

print(x)

Output

3

Looping Array Elements

You can use the for in loop to loop through all the elements of an array.

Example

Print each item in the cars array:

for x in cars:

 print(x)

Output

Toyota

Volvo

BMW

Adding Array Elements

You can use the append() method to add an element to an array.

Example

Add one more element to the cars array:

cars.append("Honda")

print(cars)

Output

["Ford", "Volvo", "BMW","Honda"]

Removing Array Elements

You can use the pop() method to remove an element from the array.

Example

Delete the second element of the cars array:

cars.pop(1)

print(cars)

Output

["Ford", "BMW","Honda"]

You can also use the remove() method to remove an element from the array.

Example

Delete the element that has the value "Volvo":

cars.remove("Volvo")

print(cars)

Output

["Ford", "BMW","Honda"]

Array Methods

Python has a set of built-in methods that you can use on lists/arrays.

Method Description

append() Adds an element at the end of the list

clear() Removes all the elements from the list

copy() Returns a copy of the list

count() Returns the number of elements with the specified value

extend() Add the elements of a list (or any iterable), to the end of the current list

index() Returns the index of the first element with the specified value

insert() Adds an element at the specified position

pop() Removes the element at the specified position

remove() Removes the first item with the specified value

reverse() Reverses the order of the list

https://www.w3schools.com/python/ref_list_append.asp
https://www.w3schools.com/python/ref_list_clear.asp
https://www.w3schools.com/python/ref_list_copy.asp
https://www.w3schools.com/python/ref_list_count.asp
https://www.w3schools.com/python/ref_list_extend.asp
https://www.w3schools.com/python/ref_list_index.asp
https://www.w3schools.com/python/ref_list_insert.asp
https://www.w3schools.com/python/ref_list_pop.asp
https://www.w3schools.com/python/ref_list_remove.asp
https://www.w3schools.com/python/ref_list_reverse.asp

sort() Sorts the list

Ndarray Manipulation

https://www.w3schools.com/python/ref_list_sort.asp

Numpy’s Structured Array

Numpy’s Structured Array is similar to Struct in C. It is used for grouping data of different types and sizes.

Structure array uses data containers called fields. Each data field can contain data of any type and size. Array

elements can be accessed with the help of dot notation.

Note: Arrays with named fields that can contain data of various types and sizes.

Properties of Structured array

 All structs in array have same number of fields.

 All structs have same fields names.

For example, consider a structured array of student which has different fields like name, year, marks.

Each record in array student has a structure of class Struct. The array of a structure is referred to as struct as

adding any new fields for a new struct in the array, contains the empty array.

Example

Python program to demonstrate

Structured array

import numpy as np

a = np.array([('Sana', 2, 21.0), ('Mansi', 7, 29.0)],

dtype=[('name', (np.str_, 10)), ('age', np.int32), ('weight', np.float64)])

print(a)

Output:

[('Sana', 2, 21.0) ('Mansi', 7, 29.0)]

Reading and writing array data on files in python using NumPy

Reading array data on files in python using NumPy

NumPy is a general-purpose array-processing package. It provides a high-performance multidimensional array

object and tools for working with these arrays.

Numerical data can be present in different formats of file :

 The data can be saved in a txt file where each line has a new data point.

 The data can be stored in a CSV(comma separated values) file.

 The data can be also stored in TSV(tab separated values) file.

Syntax: numpy.loadtxt(fname, dtype=’float’, comments=’#’, delimiter=None, converters=None, skiprows=0,

usecols=None, unpack=False, ndmin=0)

Example 1: Reading numerical data from text file

Importing libraries that will be used

import numpy as np

Setting name of the file that the data is to be extracted from in python

filename = 'gfg_example1.txt'

Loading file data into numpy array and storing it in variable called data_collected

data_collected = np.loadtxt(filename)

Printing data stored

print(data_collected)

Type of data

print(f'Stored in : {type(data_collected)} and data type is : {data_collected.dtype}')

Output

Writing array data on files in python using NumPy

The Numpy array can be saved to a text file using various methods like the savetxt() method, save() method, and

dataframe.to_csv() function. Numpy is a Python library that is used to do the numerical computation, manipulate

arrays, etc.

Method 1: Using the numpy.savetxt() function

The numpy.savetxt() function simply saves the numpy array to a text file. The function takes two arguments - the

file name in which the numpy array is to be saved and the array itself.

Method 2: Using the numpy.save() Function

The numpy.save() function saves the array to a binary file with the `.npy` extension. The file can be loaded back to

Python using the numpy.load() function.

Pandas

Pandas is a Python library used for working with data sets.

It has functions for analyzing, cleaning, exploring, and manipulating data.

Key Features of Pandas

o It has a DataFrame object that is quick and effective, with both standard and custom indexing.

o Utilized for reshaping and turning of the informational indexes.

o For aggregations and transformations, group by data.

o It is used to align the data and integrate the data that is missing.

o Provide Time Series functionality.

o Process a variety of data sets in various formats, such as matrix data, heterogeneous tabular data, and time

series.

o Manage the data sets' multiple operations, including subsetting, slicing, filtering, groupBy, reordering, and

reshaping.

o It incorporates with different libraries like SciPy, and scikit-learn.

o Performs quickly, and the Cython can be used to accelerate it even further.

Benefits of Pandas

The following are the advantages of pandas overusing other languages:

Representation of Data: Through its DataFrame and Series, it presents the data in a manner that is appropriate for

data analysis.

Clear code: Pandas' clear API lets you concentrate on the most important part of the code. In this way, it gives

clear and brief code to the client.

Installation of Pandas

If you have Python and PIP already installed on a system, then installation of Pandas is very easy.

Install it using this command:

C:\Users\Your Name>pip install pandas

If this command fails, then use a python distribution that already has Pandas installed like, Anaconda, Spyder etc.

Import Pandas

Once Pandas is installed, import it in your applications by adding the import keyword:

import pandas

Now Pandas is imported and ready to use.

ExampleGet your own Python Server

import pandas

https://www.w3schools.com/python/default.asp
https://www.w3schools.com/python/python_pip.asp
https://www.w3schools.com/spaces/

mydataset = {

 'cars': ["BMW", "Volvo", "Ford"],

 'passings': [3, 7, 2]

}

myvar = pandas.DataFrame(mydataset)

print(myvar)

Output

 cars passings

0 BMW 3

1 Volvo 7

2 Ford 2

Pandas as pd

Pandas is usually imported under the pd alias.

alias: In Python alias are an alternate name for referring to the same thing.

Create an alias with the as keyword while importing:

import pandas as pd

Now the Pandas package can be referred to as pd instead of pandas.

Example

import pandas as pd

mydataset = {

 'cars': ["BMW", "Volvo", "Ford"],

 'passings': [3, 7, 2]

}

myvar = pd.DataFrame(mydataset)

print(myvar)

Output

 cars passings

0 BMW 3

1 Volvo 7

2 Ford 2

Introduction to pandas Data Structures

Pandas deals with the following three data structures −

 Series

 DataFrame

 Panel

These data structures are built on top of Numpy array, which means they are fast.

Dimension & Description

The best way to think of these data structures is that the higher dimensional data structure is a container of its lower

dimensional data structure. For example, DataFrame is a container of Series, Panel is a container of DataFrame.

Data

Structure
Dimensions Description

Series 1 1D labeled homogeneous array, sizeimmutable.

Data Frames 2
General 2D labeled, size-mutable tabular structure with

potentially heterogeneously typed columns.

Panel 3 General 3D labeled, size-mutable array.

Building and handling two or more dimensional arrays is a tedious task, burden is placed on the user to consider

the orientation of the data set when writing functions. But using Pandas data structures, the mental effort of the

user is reduced.

For example, with tabular data (DataFrame) it is more semantically helpful to think of the index (the rows) and

the columns rather than axis 0 and axis 1.

Mutability

All Pandas data structures are value mutable (can be changed) and except Series all are size mutable. Series is size

immutable.

Note − DataFrame is widely used and one of the most important data structures. Panel is used much less.

Series

Series is a one-dimensional array like structure with homogeneous data. For example, the following series is a

collection of integers 10, 23, 56, …

10 23 56 17 52 61 73 90 26 72

DataFrame

DataFrame is a two-dimensional array with heterogeneous data. For example,

Name Age Gender Rating

Steve 32 Male 3.45

Lia 28 Female 4.6

Vin 45 Male 3.9

Katie 38 Female 2.78

The table represents the data of a sales team of an organization with their overall performance rating. The data is

represented in rows and columns. Each column represents an attribute and each row represents a person.

Data Type of Columns

The data types of the four columns are as follows −

Column Type

Name String

Age Integer

Gender String

Rating Float

Panel

Panel is a three-dimensional data structure with heterogeneous data. It is hard to represent the panel in graphical

representation. But a panel can be illustrated as a container of DataFrame.

Operations between Data Structures in Pandas

In Pandas, there are different useful data operations for DataFrame, which are as follows

Row and column selection

We can select any row and column of the DataFrame by passing the name of the rows and column. When you

select it from the DataFrame, it becomes one-dimensional and considered as Series.

Filter Data

We can filter the data by providing some of the boolean expression in DataFrame.

Null values

A Null value can occur when no data is being provided to the items. The various columns may contain no values

which are usually represented as NaN. In Pandas, several useful functions are available for detecting, removing,

and replacing the null values in Data Frame. These functions are as follows:

isnull(): The main task of isnull() is to return the true value if any row has null values.

notnull(): It is opposite of isnull() function and it returns true values for not null value.

dropna(): This method analyzes and drops the rows/columns of null values.

fillna(): It allows the user to replace the NaN values with some other values.

replace(): It is a very rich function that replaces a string, regex, series, dictionary, etc.

interpolate(): It is a very powerful function that fills null values in the DataFrame or series.

String operation

A set of a string function is available in Pandas to operate on string data and ignore the missing/NaN values. There

are different string operation that can be performed using .str. option. These functions are as follows:

lower(): It converts any strings of the series or index into lowercase letters.

upper(): It converts any string of the series or index into uppercase letters.

strip(): This function helps to strip the whitespaces including a new line from each string in the Series/index.

split(' '): It is a function that splits the string with the given pattern.

cat(sep=' '): It concatenates series/index elements with a given separator.

contains(pattern): It returns True if a substring is present in the element, else False.

replace(a,b): It replaces the value a with the value b.

repeat(value): It repeats each element with a specified number of times.

count(pattern): It returns the count of the appearance of a pattern in each element.

startswith(pattern): It returns True if all the elements in the series starts with a pattern.

endswith(pattern): It returns True if all the elements in the series ends with a pattern.

find(pattern): It is used to return the first occurrence of the pattern.

findall(pattern): It returns a list of all the occurrence of the pattern.

swapcase: It is used to swap the case lower/upper.

islower(): It returns True if all the characters in the string of the Series/Index are in lowercase. Otherwise, it returns

False.

isupper(): It returns True if all the characters in the string of the Series/Index are in uppercase. Otherwise, it

returns False.

isnumeric(): It returns True if all the characters in the string of the Series/Index are numeric. Otherwise, it returns

False.

Count Values

This operation is used to count the total number of occurrences using 'value_counts()' option.

Plots

Pandas plots the graph with the matplotlib library. The .plot() method allows you to plot the graph of your data.

.plot() function plots index against every column.

You can also pass the arguments into the plot() function to draw a specific column.

Function Application and Mapping in Pandas

Function Application

The appropriate method for applying the functions depends on whether your function expects to operate element-

wise, row wise, or column wise.

 pipe(): Table wise function applications in Pandas

 apply(): Row or column wise function operation

 applymap(): Element-wise function applications in Pandas

Before we explore the pandas function applications, we need to import pandas and numpy-

>>> import pandas as pd

>>> import numpy as np

Table-wise Function Application

Custom operations can be performed by passing the function and the appropriate number of parameters as pipe

arguments. Thus, operation is performed on the whole DataFrame.

For example, add a value 2 to all the elements in the DataFrame. Then,

adder function

The adder function adds two numeric values as parameters and returns the sum.

def adder(ele1,ele2):

 return ele1+ele2

We will now use the custom function to conduct operation on the DataFrame.

df = pd.DataFrame(np.random.randn(5,3),columns=['col1','col2','col3'])

df.pipe(adder,2)

Let’s see the full program −

Live Demo

import pandas as pd

import numpy as np

def adder(ele1,ele2):

 return ele1+ele2

http://tpcg.io/PxtAxb

df = pd.DataFrame(np.random.randn(5,3),columns=['col1','col2','col3'])

df.pipe(adder,2)

print df.apply(np.mean)

Its output is as follows −

 col1 col2 col3

0 2.176704 2.219691 1.509360

1 2.222378 2.422167 3.953921

2 2.241096 1.135424 2.696432

3 2.355763 0.376672 1.182570

4 2.308743 2.714767 2.130288

Row or Column Wise Function Application

Arbitrary functions can be applied along the axes of a DataFrame or Panel using the apply() method, which, like

the descriptive statistics methods, takes an optional axis argument. By default, the operation performs column wise,

taking each column as an array-like.

Example 1

Live Demo

import pandas as pd

import numpy as np

df = pd.DataFrame(np.random.randn(5,3),columns=['col1','col2','col3'])

df.apply(np.mean)

print df.apply(np.mean)

Its output is as follows −

col1 -0.288022

col2 1.044839

col3 -0.187009

dtype: float64

http://tpcg.io/8w3cnj

By passing axis parameter, operations can be performed row wise.

Example 2

Live Demo

import pandas as pd

import numpy as np

df = pd.DataFrame(np.random.randn(5,3),columns=['col1','col2','col3'])

df.apply(np.mean,axis=1)

print df.apply(np.mean)

Its output is as follows −

col1 0.034093

col2 -0.152672

col3 -0.229728

dtype: float64

Example 3

Live Demo

import pandas as pd

import numpy as np

df = pd.DataFrame(np.random.randn(5,3),columns=['col1','col2','col3'])

df.apply(lambda x: x.max() - x.min())

print df.apply(np.mean)

Its output is as follows −

col1 -0.167413

col2 -0.370495

col3 -0.707631

dtype: float64

Element Wise Function Application

http://tpcg.io/ipKm63
http://tpcg.io/et7myX

Not all functions can be vectorized (neither the NumPy arrays which return another array nor any value), the

methods applymap() on DataFrame and analogously map() on Series accept any Python function taking a single

value and returning a single value.

Example 1

Live Demo

import pandas as pd

import numpy as np

df = pd.DataFrame(np.random.randn(5,3),columns=['col1','col2','col3'])

My custom function

df['col1'].map(lambda x:x*100)

print df.apply(np.mean)

Its output is as follows −

col1 0.480742

col2 0.454185

col3 0.266563

dtype: float64

Example 2

Live Demo

import pandas as pd

import numpy as np

My custom function

df = pd.DataFrame(np.random.randn(5,3),columns=['col1','col2','col3'])

df.applymap(lambda x:x*100)

print df.apply(np.mean)

Its output is as follows −

col1 0.395263

col2 0.204418

http://tpcg.io/yYUiOL
http://tpcg.io/byOLhu

col3 -0.795188

dtype: float64

Kicksta

Sorting and Rankingr in pandas

pandas is a powerful Python library for data manipulation and analysis, provides various functionalities to sort and

rank data efficiently. It can be used for sorting and ranking organized data, identifying patterns, and making

informed decisions.

Sorting

Sorting is rearranging data in ascending or descending order based on specific columns or rows. It is crucial for

tasks like identifying the highest or lowest values, finding outliers, or preparing data for visualization.

Sorting can be done in multiple ways:

Sorting by columns

To sort a pandas DataFrame by a specific column, we can use the sort_values() method.

Syntax

sorted_df = df.sort_values(by='column_name', ascending=flag)

The parameters involved are as follows:

 by: Specifies the column by which the DataFrame should be sorted.

 ascending: Determines the sorting order. Set to True for ascending order and False for descending order.

This parameter is optional, and if not specified, it defaults to True.

https://www.educative.io/answers/what-is-pandas-in-python
https://www.educative.io/answers/what-is-python

Output

Sorting by rows

To sort the rows of a DataFrame based on their index or row labels, we can use the sort_index() method.

Syntax

sorted_df = df.sort_index(axis=0, ascending=flag)

The parameters involved are as follows:

 axis: Specifies the axis along which to sort. Set axis=0 for rows and axis=1 for columns.

 ascending: Determines the sorting order. Set to True for ascending order and False for descending order.

This parameter is optional, and if not specified, it defaults to True.

Output

Sorting by multiple columns

Sorting by multiple columns creates a hierarchical sorting order.

Syntax

sorted_df = df.sort_values(by=['column1', 'column2'], ascending=[flag_one, flag_two])

The parameters involved are as follows:

 by: Specifies a list of column names by which the DataFrame should be sorted. The sorting applies in the

order the columns are listed.

 ascending: Determines the sorting order for each column. Set to True for ascending order and False for

descending order. This parameter is optional, and if not specified, it defaults to True for all columns.

Output

Ranking

Ranking is assigning ranks or positions to data elements based on their values. This is particularly valuable when

analyzing data with repetitive values or when you need to identify the top or bottom entries.

Syntax

df['Rank'] = df['column'].rank(axis=0, method='average')

The parameters involved are as follows:

 axis: Axis to rank. 0 for index and 1 for columns.

 method: Specifies the method used to rank data when there are ties (i.e., duplicate values). The available

options are as follows:

o average (default): Assigns the average rank to tied values. For example, if two values have the

same rank, they both get the average of the ranks they would have received if there were no ties.

o min: Assigns the minimum rank to tied values. In the case of ties, the method assigns the smallest

rank to all tied values.

o max: Assigns the maximum rank to tied values. In the case of ties, the method assigns the largest

rank to all tied values.

o first: Assigns ranks in the order they appear in the data. The first occurrence of a value gets a rank

of 1, the second occurrence gets a rank of 2, and so on.

o dense: Similar to 'min' but ranks are continuous without gaps. For example, if there are two tied

values with ranks 2 and 3, both will receive a rank of 2.

Output

Correlation and Covariance in Pandas

Both covariance and correlation are about the relationship between the variables.

Covariance

Covariance measures how two variables change in relation to each other. In other words, it measures whether the

variables increase or decrease together. If the variables tend to increase or decrease together, the covariance is

positive. If one variable increases as the other decreases, then the covariance is negative.

The following represents the Python code for calculating the pairwise covariance of different columns of IRIS

dataset. Note that IRIS dataset is loaded and a Pandas dataframe is created. Then, method cov() is invoked on the

Pandas dataframe to calculate covariance.

https://en.wikipedia.org/wiki/Covariance

Correlation

Correlation is similar to covariance in that it measures how two variables change in relation to each other.

However, correlation normalizes the variance of both variables, which makes it easier to interpret than covariance.

Correlation can range from -1 to 1; a value of 0 indicates that there is no linear relationship between the two

variables, a value of 1 indicates that there is a perfect positive linear relationship (i.e., as one variable increases, so

does the other), and a value of -1 indicates that there is a perfect negative linear relationship (i.e., as one variable

increases, the other decreases).

The formula for calculating correlation as a function of covariance and standard deviation goes as following:

 The following represents the Python code for calculating the pairwise correlation of different columns of

IRIS dataset. Note that IRIS dataset is loaded and a Pandas dataframe is created. Then, method corr() is invoked on

the Pandas dataframe to calculate covariance.

https://en.wikipedia.org/wiki/Correlation

Not a Number Data

Missing Data can occur when no information is provided for one or more items or for a whole unit. Missing Data

is a very big problem in a real-life scenarios. Missing Data can also refer to as NA(Not Available) values in

pandas. In DataFrame sometimes many datasets simply arrive with missing data, either because it exists and was

not collected or it never existed. For Example, Suppose different users being surveyed may choose not to share

their income, some users may choose not to share the address in this way many datasets went missing.

In Pandas missing data is represented by two value:

 None: None is a Python singleton object that is often used for missing data in Python code.

 NaN : NaN (an acronym for Not a Number), is a special floating-point value recognized by all systems that

use the standard IEEE floating-point representation

there are several useful functions for detecting, removing, and replacing null values in Pandas DataFrame

1. isnull

2. isnan

3. isna

4. notnull

Using the isnan() Method

Using the pandas.isnull function, we verified the NaN entries in the instance above. We will now employ a

different technique termed isnan. This function is an in-built function of the numpy library. The code below shows

an example of how to check the nan value in a particular cell.

Code

Python program to check for the nan value in a cell using isnan function of numpy

Importing the required libraries

import numpy as np

import pandas as pd

Creating a data frame

data = {'numbers1': [3, 6, 9, 2, 6, 8, np.nan, 1, 3, np.nan, 8, 9, 10, np.nan, 8],

 'numbers2': [4, 6, np.nan, 5, 8, np.nan,1, 6, np.nan, np.nan, 17, np.nan, 19, 7, 3]}

dframe = pd.DataFrame(data)

value = dframe.at[6, 'numbers1'] #nan

nan = np.isnan(value)

print("The particular value of the data frame is nan:", nan)

Output:

The particular value of the data frame is nan: True

Using .isna Function of Pandas

We will show how to use .isna function of Pandas.

Using .notnull Method

The notnull function is another way to determine whether a cell is NaN or a dataframe contains a null value.

According to the program below, this function will give a boolean result of False if the given cell value is NaN or

null.

Hierarchical Indexing and Leveling in Pandas

Hierarchical indexing

Hierarchical Indexes are also known as multi-indexing is setting more than one column name as the index. we

are going to use homelessness.csv file.

Example

importing pandas library as alias pd

import pandas as pd

calling the pandas read_csv() function.

and storing the result in DataFrame df

https://media.geeksforgeeks.org/wp-content/cdn-uploads/20210408124122/homelessness.csv

df = pd.read_csv('homelessness.csv')

print(df.head())

Output

Reading and Writing Data: CSV or Text File

One of the most striking features of Pandas is its ability to read and write various types of files including CSV and

Excel. You can effectively and easily manipulate CSV files in Pandas using functions

like read_csv() and to_csv() .

Pandas to read HTML from a string

Before you use Pandas to read HTML from a string, you need to install Pandas using conda or pip commands.

pip3 install pandas

conda install pandas

Once you’ve done that, you can create a Python file. Paste a line of code in which any variable contains HTML.

According to the Pandas official documentation, the string can represent the HTML or a URL.

If you’re using lxml, it will only accept the following protocols:

 Ftp

https://pandas.pydata.org/docs/reference/api/pandas.read_html.html

 File url

 Http

Therefore, if you’re using a URL that begins with “HTTPS,” remove the ‘s’ from the end. After pasting the code

with HTML, you can run the read_html function.

import pandas as pd

df_list = pd.read_html(html)

The function will extract the data from HTML tables, showing you the list of tables. If you know the number of

tables in the string, you can confirm that Pandas has read all of the DataFrames by using the following command:

print(len(df_list))

OUTPUT: 1

If your string only has one table, the df_list variable will confirm it. Finally, if you want to see the contents of the

table in your string, you can use this command:

print(df_list[0])

It will extract the data from the HTML table/s and show it.

How to read HTML in Pandas through a URL

Pandas read_html() can also accept a URL. You can read HTML tables from websites directly into a pandas

DataFrame by passing the URL to the read_html() function.

The function will return one DataFrame for each table on the page. In this Pandas read HTML example, the

following URL is used: https://int.soccerway.com/teams/rankings/fifa/

To list the DataFrames, paste the following command:

dfs = pd.read_html(URL)

You will see a list of DataFrames. You can now type len(dfs) to see all the tables in the URL. The Pandas read

HTML example URL has 1 table.

How to read HTML in Pandas through a file

You can also read HTML tables from a local file by passing the file path to the read_html() function. Suppose you

have saved an HTML file called “table.html” in your working directory. The file path would be:

file_path = ‘table.html’

Now, to read this table into a pandas DataFrame, run the following code:

file_path = ‘‘table.html’

with open(file_path, ‘r’) as f:

 dfs = pd.read_html(f.read())

dfs[0]

Reading Excel File using Pandas in Python

 Installing and Importing Pandas

 Reading multiple Excel sheets using Pandas

 Application of different Pandas functions

 Reading Excel File using Pandas in Python

 Installating Pandas

 To install Pandas in Python, we can use the following command in th command prompt:

 pip install pandas

To install Pandas in Anaconda, we can use the following command in Anaconda Terminal:

 conda install pandas

Importing pandas

First of all, we need to import the Pandas module which can be done by running the command:

import pandas as pd

Now we can import the Excel file using the read_excel function in Pandas. The second statement reads the data

from Excel and stores it into a pandas Data Frame which is represented by the variable newData.

df = pd.read_excel('Example.xlsx')

print(df)

Unit V

Programming w i t h R

Introduction

• R is a popular programming language used for statistical computing and graphical presentation.

• Its most common use is to analyze and visualize data.

• It is easy to draw graphs in R, like pie charts, histograms, box plot, scatter plot, etc++

• It works on different platforms (Windows, Mac, Linux)

• It is open-source and free

• It has a large community support

• It has many packages (libraries of functions) that can be used to solve different problems.

 Example

 # using equal to operator

 var1 = "hello"

 print(var1)

 # using leftward operator

 var2 <- "hello"

 print(var2)

 # using rightward operator

 "hello" -> var3

 print(var3)

 Output

 [1] "hello"

 [1] "hello"

 [1] "hello"

 Data Structures in R

The most essential data structures used in R include:

• Vectors

• Lists

• Dataframes

• Matrices

• Arrays

• Factors

	SHRIMATI INDIRA GANDHI COLLEGE
	Affiliated to Bharathidasan University| Nationally Accredited at ‘A’ Grade(3rd Cycle) by NAAC
	An ISO 9001:2015 Certified Institution
	Thiruchirrappalli
	STUDY MATERIAL
	DEPARTMENT OF COMPUTER SCIENCE,INFORMATION TECHNOLOGY AND COMPUTER APPLICATIONS
	Prepared by,
	MS.S.S.NACHIYA , M.C.A., M.Phil.,UGC-NET
	ASST. PROF. IN COMPUTER SCIENCE,
	SHRIMATI INDIRA GANDHI COLLEGE,
	TIRUCHIRAPPALLI - 2
	First Year CORE COURSE II Semester I PROBLEM SOLVING USING PYTHON
	Code: (Theory) Credit: 5 COURSE OBJECTIVES:
	UNIT – 1 INTRODUCTION TO PYTHON:
	UNIT – II STRINGS:
	UNIT – III FILES AND EXCEPTIONS:
	UNIT – IV DATA MANIPULATION TOOLS & SOFTWARES:
	UNIT – V PROGRAMMING WITH R:
	Unit -I
	Introduction to Python
	What can Python do?
	Why Python?
	Python Basic Syntax
	Advantages of Python
	Where is Python used?

	How to Get Started With Python?
	1. Run Python in Immediate mode
	2. Run Python in the Integrated Development Environment (IDE)

	Python Comments
	Single Line Comments
	Example

	Multi-Line Comments
	Example

	Docstring Comments
	Rules for Naming Python Identifiers
	Some Valid and Invalid Identifiers in Python

	Python Keywords and Identifiers Examples
	Rules for Keywords in Python
	List of Python Keywords
	Creating Variables
	Example
	Rules for Python variables

	Variables Assignment in Python
	Redeclaring variables in Python
	Python Assign Values to Multiple Variables
	Assigning different values to multiple variables

	Python Data Types
	Python Numbers
	Python Strings
	Python Lists
	Python Tuples
	Python Dictionary
	Numbers

	Set
	Creation of set
	Output
	Boolean

	Sequence
	List
	Tuple
	Example
	String Data Type
	Creating String

	Python Operators
	Arithmetic Operators
	Comparison operator
	Assignment Operators
	Bitwise Operators
	Logical Operators
	Membership Operators
	Identity Operators

	String operations in Python
	1. String Padding: Add Extra Character Elegantly
	2. String Splitting
	3. Concatenate Strings
	4. Search for Substring Effective
	5. Reverse the String

	6.Deleting the String

	Control Statements in Python
	if Statements
	Break Statements
	Continue Statements
	Python While Loop
	Syntax of Python While

	Python for loop
	input()
	Creating a Function
	Example

	Calling a Function
	Example

	Python Built in Functions
	user-defined functions in Python
	Parameterized Function
	Implicit Type Conversion
	Explicit Type Conversion

	Type Coercion
	Python Recursion
	Declaration of Strings
	Output

	Python slice()
	Example
	slice() Syntax
	slice() Parameters
	Example 1: Create a slice object for slicing
	Example 2: Get substring using slice object
	Method 1: Using For loop
	Method 2: For loop and range()
	Method 3: Using a while loop
	Method 4: Using list comprehension
	Method 5: Using enumerate()
	Method 6: Using NumPy
	Method 7: Using the iter function and the next function
	Method 8: Using the map() function

	Python Escape Characters
	Python String Template Class
	Template Class allows us to create simplified syntax for output specification. The format uses placeholder names formed by $ with valid Python identifiers (alphanumeric characters and underscores). Surrounding the placeholder with braces allows it to ...
	Python String center() Method
	Example
	Creating a Tuple
	Creating a Tuple (1)
	Example
	Example (1)

	Tuples as return values
	Basic Tuples Operations
	Opening a file
	Example
	The close() method
	The with statement
	Example

	Writing the file
	Example

	Try and Except Statement – Catching Exceptions
	Catching Specific Exception
	Try with Else Clause
	Finally Keyword in Python
	Raising Exception
	Advantages of Exception Handling:
	Disadvantages of Exception Handling:

	Classes in Python:
	Creating Classes in Python
	Objects in Python:

	Python OOPs Concepts
	Class
	Object
	Method
	Inheritance
	Polymorphism
	Encapsulation
	Data Abstraction
	Protected Members
	Private Members

	Polymorphism in Python
	Example
	Classes in Python:
	Creating Classes in Python
	Objects in Python:

	Python Inheritance
	Syntax
	Syntax (1)
	Python Multi-Level inheritance
	Syntax

	Python Multiple inheritance

	Method Overriding in Python
	Encapsulation in Python
	Data Hiding in Python
	NumPy
	Use NumPy
	Installing Numpy on Windows:

	Ndarray
	Creating a ndarray object
	Finding the dimensions of the Array

	NumPy Array Slicing
	Syntax
	Example
	Example (1)

	NumPy Array Iterating
	Example
	Example (1)
	Access the Elements of an Array
	Example
	Example (1)

	The Length of an Array
	Example

	Looping Array Elements
	Example

	Adding Array Elements
	Example

	Removing Array Elements
	Example
	Example (1)

	Array Methods

	Numpy’s Structured Array
	Method 1: Using the numpy.savetxt() function
	Method 2: Using the numpy.save() Function
	Key Features of Pandas
	Benefits of Pandas
	Installation of Pandas
	Import Pandas
	ExampleGet your own Python Server

	Pandas as pd
	Example

	Dimension & Description
	Mutability

	Series
	DataFrame
	Data Type of Columns
	Panel

	Function Application
	Table-wise Function Application
	adder function

	Row or Column Wise Function Application
	Example 1
	Example 2
	Example 3

	Element Wise Function Application
	Example 1
	Example 2
	Kicksta
	Sorting and Rankingr in pandas

	Sorting
	Sorting by columns
	Syntax

	Sorting by rows
	Syntax

	Sorting by multiple columns
	Syntax

	Ranking
	Syntax

	Using the isnan() Method
	Using .isna Function of Pandas
	Using .notnull Method
	Pandas to read HTML from a string
	How to read HTML in Pandas through a URL
	How to read HTML in Pandas through a file

	Reading Excel File using Pandas in Python
	Installating Pandas
	Importing pandas

